Skip to main content
Log in

Effects of Rapid Thermal Annealing on the Structural, Optical, and Electrical Properties of Au/CuPc/n-Si (MPS)-type Schottky Barrier Diodes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of rapid thermal annealing temperature on structural, morphological, and optical properties of copper phthalocyanine (CuPc) films on n-Si are investigated. The deposited CuPc films on n-Si substrate form nanoparticles and are slightly elongated with an increase in surface roughness with increase in annealing temperature due to the aggregation of the native grains. The electrical and current transport properties of a fabricated Au/CuPc/n-Si metal-polymer-semiconductor (MPS)-type Schottky barrier diodes (SBDs) are explored at various annealing temperatures (range 100–300 °C) by current–voltage (I–V) and capacitance–voltage (C–V) measurements. Results reveal that the estimated barrier height decreases with increasing annealing temperature and could be ascribed to the diffusion of Au atoms into CuPc films transferring negative charges to the molecule inducing an n-type doping of the organic film. An analysis of the forward log (I)–log (V) plot of Au/CuPc/n-Si (MPS)-type SBDs indicated the carrier transport domination by ohmic conduction in the lower bias and by the space-charge-limited current (SCLC) transport mechanism at higher bias regions irrespective of annealing temperatures that might be related to additional traps initiating from the CuPc. Poole–Frenkel emission governs the current transport in the reverse bias regardless of annealing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. SH Barkhalov, YU.A. Vidadi, Thin Solid Films 40 (1977)

  2. R.K. Gupta, R.A. Singh, Compos. Sci. Techn. 65, 677 (2005)

    Article  Google Scholar 

  3. A.K Hassan, R.D. Gould, J. Phys. D: Appl. Phys. 22 (1989)

  4. Y. Osada, A. Mizumoto, J. Appl. Phys. 59, 1 (1986)

    Article  Google Scholar 

  5. K. Kudo, T Sumimoto, K Hiraga, S Kuniyoshi, K. Tanaka, Jpn. J. Appl. Phys. 36 (1997)

  6. F. Yakuphanoglu, Solar Energy Mater. Solar Cells 91 (2007)

  7. V. Bobnar, A. Levstik, Phys. Rev. B, 71 (2005)

  8. R.D. Gould, A.K. Hassan, Thin Solid Films 223 (1993)

  9. Y.J. Liu, H.Z. Yu, J. Phys. Chem. B 107, 7803 (2003)

    Article  Google Scholar 

  10. T.V. Basova, R.G. Parkhomenko, M. Polyakov, A.G Gurek, D. Atilla, F. Yuksel, E.I. Ryabchikova, B.Y. Kadem, A.K. Hassan, Dyes Pigments 125 (2016)

  11. H. Haick, M. Ambrico, T. Ligonzo, R.T. Tung, D. Cahen, J. Am. Chem. Soc. 128, 6854 (2006)

    Article  Google Scholar 

  12. M. Zhang, C. Shao, Z. Guo, Z. Zhang, J. Mu, T. Cao, Y. Liu, ACS Appl. Mater. Interfaces 3 (2011)

  13. C. Tang, S. VanSlyke, Appl. Phys. Lett. 51 (1987)

  14. G.A. Chamberlain, P.J. Cooney, Chem. Phys. Lett. 66 (1979)

  15. C.S. Kuo, F.G. Wakim, S.K. Sengupta, S.K. Tripathy, Jpn. J. Appl. Phys. 33 (1994)

  16. R. Gupta, S.C.K. Misra, B.D. Malhotra, N.N. Beladakere, S. Chandra, Appl. Phys. Lett. 58 (1991)

  17. Z. Caldiran, A.R. Deniz, S. Aydogan, A. yesildag, D. Ekinci, Superlattice Microstruct. 56 (2013)

  18. P.R.S. Reddy, V. Janardhanam, I. Jyothi, C.S. Harsha, V. Rajagopal Reddy, S.N Lee, J. Won, C.J. Choi, Appl. Phys. A 124 (2018)

  19. T. Kampen, A. Schuller, D.R.T. Zahn, B. Biel, J. Ortega, R. Perez, F. Flores, Appl. Surf. Sci. 234, 341 (2004)

    Article  ADS  Google Scholar 

  20. M. Cakar, N. Yildirim, S. Karatas, C. Temirci, A. Turut, J. Appl. Phys. 100 (2006)

  21. S. Okur, F. Yakuphanoglu, M. Ozsoz, P.K. Kadayifcilar, Microelectron. Eng. 86 (2009)

  22. S.-F. Chen, C.-W. Wang, Appl. Phys. Lett. 85, 765 (2004)

    Article  ADS  Google Scholar 

  23. T. Kudo, M. Kimura, K. Hanabusa, H. Shirai, T. Sakaguchi, J. Porphyr, Phthalocyanin 3, 65 (1999)

    Article  Google Scholar 

  24. I. Kim, G.E. Jabbour, Synth. Met. 162, 102 (2012)

    Article  Google Scholar 

  25. H. Bentin, N. Kudo, H. Ohkita, S. Ito, Thin Solid Films 517, 6 (2009)

  26. A.A.A. Darwish, S.R. Alharbi, M.M Hawamdeh, A. M Alsharari, S.I Qashou, J. Electron. Mater. 49 (2020)

  27. H. Hassan, N.B. yah Ibrahim, Z. Ibarahim, Sains Malaysiana. 39, 627 (2010)

  28. Z. Ahmad, M.H. Sayyad, K.S. Karimov, J. Semicond. 31, 074002 (2010)

  29. I. Ullah, M. Shah, Shaukat Ali Khattak, and Gulzar Khan. J. Electron. Mater. 48, 5609 (2019)

    Article  ADS  Google Scholar 

  30. E. Elgazzar, Mater. Res. Express 7, 095102 (2020).

  31. A.A. Kumar, V. Rajagopal Reddy, V. Janardhanam, M.-W. Seo, H. Hong, K.-S. Shin, C.-J. Choi, J. Electrochem. Soc. 159, H33 (2011)

  32. H.A. Çetinkara, M. Saǧlam, A. Türüt, N. Yalçin, Eur. Phys. J. Appl. Phys. 6, 84 (1999)

    Article  ADS  Google Scholar 

  33. M.E. Azim-Araghi, R. Sahebi, Phys. B Condens. Matter 433, 165 (2014)

    Article  ADS  Google Scholar 

  34. S.S Mali, D.S. Dalavi, P.N. Bhosale, C.A. Betty, A.K. Chauhan, P.S. Patil, RSC Adv. 2 (2012)

  35. M. Yoneyama, M. Sugi, M. Saito, K. Ikegami, S. Kuroda, S. Iizima, Jpn. Appl. Phys. 25, 961 (1986)

    Article  ADS  Google Scholar 

  36. R. Koshy, C.S. Menon, E-Journal Chem. 9, 294 (2012)

    Article  Google Scholar 

  37. S. Karan, B. Mallik, J. Phys. Chem. C 111, 7352 (2007)

    Article  Google Scholar 

  38. S.R. Forrest, M.L. Kaplan, P.H. Schmidt, W.L. Feldmann, E. Yanowski, Appl. Phys. Lett. 41, 90 (1982)

    Article  ADS  Google Scholar 

  39. L. Lozzi, S. Santucci, J. Chem. Phys. 134 (2011)

  40. F. Yakuphanoglu, S. Ilican, M. Caglar, Y. Caglar, J. Optoelectron. Adv. Mater. 9, 2180 (2007)

    Google Scholar 

  41. E. Feizi, A.K. Ray, J. Mater. Sci. Mater. Electron. 26, 4691 (2015)

    Article  Google Scholar 

  42. N.S. Kumar, S.K. Naveen Kumar, L.Yesappa, Mater. Res. Express 7, 015071 (2020)

  43. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Clarendon press, Oxford, 1988), p. 33

    Google Scholar 

  44. R. Kumar, R. Kaur, M. Sharma, M. Kaur, S.K. Tripathi, AIP Conf. Proc. (2015)

  45. M. Shah, M.H. Sayyad, Kh.S. Karimov, J. Semicond. 7, 31 (2010)

    Google Scholar 

  46. R.T. Tung, Electron transport at metal-semiconductor interfaces: general theory, Phys. Rev. B. (1992)

  47. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (2006)

  48. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  ADS  Google Scholar 

  49. A. Tataroğlu, Ş. Altındal, Y. Azizian-Kalandaragh, Phys. B: Condens Matter, 576 (2020)

  50. H. Norde, J. Appl. Phys. 50, 5052 (1979)

    Article  ADS  Google Scholar 

  51. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  52. E.H. Nicollian, J.R. Brews, Metal Oxide Semiconductor (MOS) Physics and Technology, 2nd edn. (Wiley, New York, 1982)

    Google Scholar 

  53. E.H. Nicollian, A. Goetzberger, Bell Syst. Tech. J. 46 (1967)

  54. H.G. Çetinkay, M.Yıldırım, P. Durmus, S. Altındal, J. Alloys Compd. 721 (2007)

  55. V. Rajagopal Reddy, P.R.S. Reddy, I.N. Reddy, C.J. Choi, RSC Adv. 6 105760 (2016)

  56. J.F Matoko-Ngouma, B.R. Malonda-Boungou, A.T. Raji, P.S. Moussounda, B.Mpassi-Mabiala, J. Mol. Struct. 1211 (2020)

  57. M.E. Aydin, A. Türüt, Microelectron. Eng. 84, 2875 (2007)

    Article  Google Scholar 

  58. K.H.S. Karimov, I. Qazi, S.A. Moiz, I. Murtaza, Optoelectron. Adv. Mater. Rapid Commun. 2, 4 (2008)

    Google Scholar 

  59. S.M. El-Sayed, H.M. Abdel Hamid, R.M. Radwan, Radiat. Phys. Chem. 69, 339 (2004)

  60. S.R. Forrest, Chem. Rev. 97, 1793 (1997)

    Article  Google Scholar 

  61. A. Tataroglu, A. Buyukbas Ulusan, Ş. Altındal, Y. Azizian-Kalandaragh, J. Inorg. Organomet. Polym. Matt. 31 (2021)

  62. T.G Abdel-Malik, Organic Photovoltaics, 5520 (2004)

  63. Ç. Ş. Güçlü, A. F. Özdemir, D. A. Aldemir, Ş. Altındal, J. Mater. Sci. Mater. Electron. 32 (2021)

  64. S. Altındal Yerişkin, J Mater Sci: Mater Electron. 30 (2019)

  65. A. Buyukbas-Ulusan, S. Altındal-Yerişkin, A. Tataroğlu, J. Mater. Sci. Mater. Electron. 29 (2018)

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant (NRF-2017R1A2B2003365) funded by the Ministry of Education, Republic of Korea, and by Korea Evaluation Institute of Industrial Technology (KEIT) Grant (Project No. 20004314) funded by the Ministry of Trade, Industry & Energy, Republic of Korea. This study was also financially supported by the 2020 Post-Doc. Development Program of Pusan National University, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajagopal Reddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekhar Reddy, P.R., Janardhanam, V., Rajagopal Reddy, V. et al. Effects of Rapid Thermal Annealing on the Structural, Optical, and Electrical Properties of Au/CuPc/n-Si (MPS)-type Schottky Barrier Diodes. Appl. Phys. A 127, 803 (2021). https://doi.org/10.1007/s00339-021-04945-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04945-4

Keywords

Navigation