Skip to main content
Log in

Compressive properties and behavior of copper nanowires wrapped by carbon nanotube

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The mechanical properties of copper (Cu) nanowires (NWs) wrapped by carbon nanotube (CNT) under compression are studied by molecular dynamics simulations. By constructing a new structural model, which contains a Cu NW and a CNT that is denoted as CNT@Cu, the mechanical properties, deformation process and structural transformation are investigated in terms of stress–strain relationship, number of stacking faults (SFs) and dislocations, average bond length and atomic configurations. Results show that stress–strain exhibits two nonlinear elastic contraction stages and two intervening stages of inelastic deformation. The stress of Cu NW is almost not affected by the generation and migration activities of SFs but strongly depends on the increasing ratio of SFs due to the supporting of CNT. The inelastic plastic deformation is initiated by nucleation of partial dislocations on the {110} surface and then propagates to interior along the {111} close-packed planes. Wrapped by CNT, a unique structural transformation of compressed Cu NW is found, which is from < 100 > /{111} to < 100 > /{100} through the annihilation of {111} SFs planes and formation of {100} SFs planes along the [100] crystallographic orientations. The < 100 > /{100}-structured wire would undergo nonlinear elastic contraction until to a certain large strain, and then bend near the middle part before NW fractures eventually at a very high stain. What’s more, the < 100 > /{100}-structured Cu NW possess high reversibility under unloading and an interestingly structural reverse transformation from < 100 > /{100} to < 100 > /{111} structure is observed prior to the fracture of NW at a high strain for the CNT@Cu model due the support of CNT. The ultimate compressive elastic strength of {100} (UCES-{100}) and ultimate elastic stain will decrease as the temperature increases from 10 to 500 K. The UCES of pristine (UCES-pristine) and UCSE-{100} decrease as diameter decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.-X. Zhou, K.-Q. Chen, L.-M. Tang, L.-J. Yao, Phonon thermal transport in InAs nanowires with different size and growth directions. Phys. Lett. A 377, 3144–3147 (2013)

    ADS  Google Scholar 

  2. B. Wu, A. Heidelberg, J.J. Boland, Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529 (2005)

    ADS  Google Scholar 

  3. H. Huan, L. Chen, X. Ye, Strain Effect on the Electronic and Optical Properties of CdSe Nanowires. Nanoscale Res. Lett. 12, 178 (2017)

    ADS  Google Scholar 

  4. C. Peng, Y. Ganesan, Y. Lu, J. Lou, Size dependent mechanical properties of single crystalline nickel nanowires. J. Appl. Phys. 111, 063524 (2012)

    ADS  Google Scholar 

  5. G. Aral, Y.-J. Wang, S. Ogata, A.C. Van Duin, Effects of oxidation on tensile deformation of iron nanowires: insights from reactive molecular dynamics simulations. J. Appl. Phys. 120, 135104 (2016)

    ADS  Google Scholar 

  6. B. Ma, Q. Rao, Y. He, Molecular dynamics simulation of temperature effect on tensile mechanical properties of single crystal tungsten nanowire. Comput. Mater. Sci. 117, 40–44 (2016)

    Google Scholar 

  7. Y. Gao, H. Wang, J. Zhao, C. Sun, F. Wang, Anisotropic and temperature effects on mechanical properties of copper nanowires under tensile loading. Comput. Mater. Sci. 50, 3032–3037 (2011)

    Google Scholar 

  8. Y.-H. Wen, Q. Wang, K.M. Liew, Z.-Z. Zhu, Compressive mechanical behavior of Au nanowires. Phys. Lett. A 374, 2949–2952 (2010)

    ADS  Google Scholar 

  9. S. Lee, B. Lee, M. Cho, Compressive pseudoelastic behavior in copper nanowires. Phys. Rev. B 81, 224103 (2010)

    ADS  Google Scholar 

  10. H. Zhan, Y. Gu, Theoretical and numerical investigation of bending properties of Cu nanowires. Comput. Mater. Sci. 55, 73–80 (2012)

    Google Scholar 

  11. S.D. Nath, Elastic, elastic–plastic properties of Ag, Cu and Ni nanowires by the bending test using molecular dynamics simulations. Comput. Mater. Sci. 87, 138–144 (2014)

    Google Scholar 

  12. Y. Gao, F. Wang, T. Zhu, J. Zhao, Investigation on the mechanical behaviors of copper nanowires under torsion. Comput. Mater. Sci. 49, 826–830 (2010)

    Google Scholar 

  13. H.F. Zhan, Y.T. Gu, C. Yan, P.K. Yarlagadda, Numerical exploration of the defect’s effect on mechanical properties of nanowires under torsion. Adv. Mater. Res. Trans. Tech. Publ. 335, 498-501 (2011)

    Google Scholar 

  14. L. Zhao, Y. Liu, The influence mechanism of the strain rate on the tensile behavior of copper nanowire. Sci. China Technol. Sci. 62, 2014–2020 (2019)

    ADS  Google Scholar 

  15. V.K. Sutrakar, D.R. Mahapatra, Formation of stable ultra-thin pentagon Cu nanowires under high strain rate loading. J. Phys.: Condens. Matter 20, 335206 (2008)

    Google Scholar 

  16. Z. Wu, Y. Zhang, M. Jhon, J. Greer, D. Srolovitz, Nanostructure and surface effects on yield in Cu nanowires. Acta Mater. 61, 1831–1842 (2013)

    ADS  Google Scholar 

  17. J. Veerababu, U. Manzoor, G. Sainath, S. Goyal, R. Sandhya, Deformation behavior of Cu nanowire with axial stacking fault. Mater. Res. Express 6, 075056 (2019)

    ADS  Google Scholar 

  18. H. Zhan, Y. Gu, C. Yan, X.-Q. Feng, P. Yarlagadda, Numerical exploration of plastic deformation mechanisms of copper nanowires with surface defects. Comput. Mater. Sci. 50, 3425–3430 (2011)

    Google Scholar 

  19. H. Xie, F. Yin, T. Yu, G. Lu, Y. Zhang, A new strain-rate-induced deformation mechanism of Cu nanowire: transition from dislocation nucleation to phase transformation. Acta Mater. 85, 191–198 (2015)

    Google Scholar 

  20. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    ADS  Google Scholar 

  21. J. Bao, Q. Zhou, J. Hong, Z. Xu, Synthesis and magnetic behavior of an array of nickel-filled carbon nanotubes. Appl. Phys. Lett. 81, 4592–4594 (2002)

    ADS  Google Scholar 

  22. A. Setlur, J. Lauerhaas, J. Dai, R.P. Chang, A method for synthesizing large quantities of carbon nanotubes and encapsulated copper nanowires. Appl. Phys. Lett. 69, 345–347 (1996)

    ADS  Google Scholar 

  23. F. Sun, H. Li, K.M. Liew, Compressive mechanical properties of carbon nanotubes encapsulating helical copper nanowires. Carbon 48, 1586–1591 (2010)

    Google Scholar 

  24. B.-W. Jeong, J.-K. Lim, S.B. Sinnott, Tensile mechanical behavior of hollow and filled carbon nanotubes under tension or combined tension-torsion. Appl. Phys. Lett. 90, 023102 (2007)

    ADS  Google Scholar 

  25. H. Huan, B. Fu, X. Ye, The torsional mechanical properties of copper nanowires supported by carbon nanotubes. Phys. Lett. A 381, 481–488 (2017)

    ADS  Google Scholar 

  26. S. Nosé, A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984)

    ADS  Google Scholar 

  27. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)

    ADS  Google Scholar 

  28. S. Foiles, M. Baskes, M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983 (1986)

    ADS  Google Scholar 

  29. M.S. Daw, M.I. Baskes, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984)

    ADS  Google Scholar 

  30. Y. Mishin, M. Mehl, D. Papaconstantopoulos, A. Voter, J. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001)

    ADS  Google Scholar 

  31. J. Tersoff, Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566 (1989)

    ADS  Google Scholar 

  32. H. Akbarzadeh, H. Yaghoubi, Molecular dynamics simulations of silver nanocluster supported on carbon nanotube. J. Colloid Interface Sci. 418, 178–184 (2014)

    ADS  Google Scholar 

  33. H. Akbarzadeh, M. Abbaspour, Investigation of melting and freezing of Ag–Au alloy nanoclusters supported on carbon nanotube using molecular dynamics simulations. J. Mol. Liq. 216, 671–682 (2016)

    Google Scholar 

  34. Y. Yan, Y. Lei, S. Liu, Tensile responses of carbon nanotubes-reinforced copper nanocomposites: molecular dynamics simulation. Comput. Mater. Sci. 151, 273–277 (2018)

    Google Scholar 

  35. S.-P. Huang, D.S. Mainardi, P.B. Balbuena, Structure and dynamics of graphite-supported bimetallic nanoclusters. Surf. Sci. 545, 163–179 (2003)

    ADS  Google Scholar 

  36. M. Allen, D. Tildesley, Computer Simulation of Liquids (Oxford Science, London, 1990)

    MATH  Google Scholar 

  37. S. Plimpton, P. Crozier, A. Thompson, LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia National Lab. 18, 43 (2007)

    Google Scholar 

  38. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    MATH  ADS  Google Scholar 

  39. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool (http://ovito.org/). Modelling Simul. Mater. Sci, Eng, 18 (2010) 015012.

  40. C.L. Kelchner, S. Plimpton, J. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085 (1998)

    ADS  Google Scholar 

  41. X. Guo, W. Liang, M. Zhou, Mechanism for the pseudoelastic behavior of FCC shape memory nanowires. Exp. Mech. 49, 183–190 (2009)

    Google Scholar 

  42. P.R. Budarapu, R. Gracie, S.-W. Yang, X. Zhuang, T. Rabczuk, Efficient coarse graining in multiscale modeling of fracture. Theoret. Appl. Fract. Mech. 69, 126–143 (2014)

    Google Scholar 

  43. H. Talebi, M. Silani, S.P. Bordas, P. Kerfriden, T. Rabczuk, A computational library for multiscale modeling of material failure. Comput. Mech. 53, 1047–1071 (2014)

    MathSciNet  Google Scholar 

  44. Z. Wang, J. Li, F. Gao, W.J. Weber, Tensile and compressive mechanical behavior of twinned silicon carbide nanowires. Acta Mater. 58, 1963–1971 (2010)

    ADS  Google Scholar 

  45. I.N. Mastorakos, H.M. Zbib, D.F. Bahr, J. Parsons, M. Faisal, Pseudoelastic behavior of Cu–Ni composite nanowires. Appl. Phys. Lett. 94, 043104 (2009)

    ADS  Google Scholar 

  46. F. Ma, K. Xu, Size-dependent theoretical tensile strength and other mechanical properties of [001] oriented Au, Ag, and Cu nanowires. J. Mater. Res. 21, 2810–2816 (2006)

    ADS  Google Scholar 

  47. H. Cao, Z. Rui, F. Yang, Mechanical properties of Cu nanowires: effects of cross-sectional area and temperature. Mater. Sci. Eng. A (2020). https://doi.org/10.1016/j.msea.2020.139644

    Article  Google Scholar 

  48. X. Shi-Feng, C. Shang-Da, S. Ai-Kah, The effect of atomic vacancies and grain boundaries on mechanical properties of gan nanowires. Chinese Physics Letters 28, 066201 (2011)

    ADS  Google Scholar 

  49. H.S. Park, K. Gall, J.A. Zimmerman, Deformation of FCC nanowires by twinning and slip. J. Mech. Phys. Solids 54, 1862–1881 (2006)

    MATH  ADS  Google Scholar 

  50. C.-D. Wu, P.-H. Sung, T.-H. Fang, Study of deformation and shape recovery of NiTi nanowires under torsion. J. Mol. Model. 19, 1883–1890 (2013)

    Google Scholar 

  51. H.S. Park, K. Gall, J.A. Zimmerman, Shape memory and pseudoelasticity in metal nanowires. Phys. Rev. Lett. 95, 255504 (2005)

    ADS  Google Scholar 

  52. S. Vlassov, B. Polyakov, M. Vahtrus, M. Mets, M. Antsov, S. Oras, A. Tarre, T. Arroval, R. Lõhmus, J. Aarik, Enhanced flexibility and electron-beam-controlled shape recovery in alumina-coated Au and Ag core–shell nanowires. Nanotechnology 28, 505707 (2017)

    Google Scholar 

  53. H. Wu, Molecular dynamics study on mechanics of metal nanowire. Mech. Res. Commun. 33, 9–16 (2006)

    MATH  Google Scholar 

  54. S. Koh, H. Lee, C. Lu, Q. Cheng, Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. Phys. Rev. B 72, 085414 (2005)

    ADS  Google Scholar 

  55. S.K. Sankaranarayanan, V.R. Bhethanabotla, B. Joseph, Molecular dynamics simulation of temperature and strain rate effects on the elastic properties of bimetallic Pd-Pt nanowires. Phys. Rev. B 76, 134117 (2007)

    ADS  Google Scholar 

  56. P.-Y. Yang, S.-P. Ju, Z.-M. Lai, J.-Y. Hsieh, J.-S. Lin, The mechanical properties and thermal stability of ultrathin germanium nanowires. RSC Adv. 6, 105713–105722 (2016)

    ADS  Google Scholar 

  57. T. Xu, Z. Zhu, S. Geng, H. Song, Molecular dynamics study of effect of hydrogen atoms on mechanical properties of α-Fe nanowires. Phys. Lett. A 381, 3222–3227 (2017)

    Google Scholar 

  58. X. Zhou, H. Zhou, X. Li, C. Chen, Size effects on tensile and compressive strengths in metallic glass nanowires. J. Mech. Phys. Solids 84, 130–144 (2015)

    ADS  Google Scholar 

  59. Y. Gan, B. Zhang, Atomistic study on size-dependent mechanical properties of monatomic tantalum metallic glass nanowires. J. Non-Cryst. Solids 546, 120285 (2020)

    Google Scholar 

  60. G. Aral, Oxide shell layer influences on size-dependent tensile and compressive mechanical properties of iron nanowires: a ReaxFF molecular dynamics study. J. Appl. Phys. 126, 135109 (2019)

    ADS  Google Scholar 

  61. M. Nasr Esfahani, B.E. Alaca, A review on size-dependent mechanical properties of nanowires. Adv. Eng. Mater. 21, 1900192 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Science and Technology Research program of Jiangxi Education Department (No. GJJ208909).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaomei Qin or Xiang Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 769 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, B., Zhang, Z., Li, L. et al. Compressive properties and behavior of copper nanowires wrapped by carbon nanotube. Appl. Phys. A 127, 787 (2021). https://doi.org/10.1007/s00339-021-04935-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04935-6

Keywords

Navigation