Skip to main content

Advertisement

Log in

Synergy effect of mixed sintering accelerator on the deoxidation and sintering property improvement of Cu nanoparticles at low temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, a mixed sintering accelerator of colophony and cetyltrimethyl ammonium bromide (CTAB) was developed to improve the sintering properties of Cu nanoparticles (NPs) paste. With the synergy effect of the mixed sintering accelerator, Cu NPs paste could be well sintered at 260 °C for 30 min under a pressure of 2 MPa, and the shear strength was greatly improved from 15 to 33 MPa. The fracture morphology of the Cu NPs joint transformed from brittle interface failure features to ductile dimple features, and the porosity in the sintered layer was significantly reduced. XRD analysis further confirmed that the synergy of colophony and CTAB could effectively remove the oxides in the Cu NPs paste during sintering, and thereby improve the sintering properties. This work can provide an applicable approach to improve the sintering properties of metal NPs and help to understand the synergy effect of sintering accelerators on the bonding behaviors of metal nanoparticles at low temperatures.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V.R. Manikam, K.Y. Cheong, Die attach materials for high temperature applications: a review. Ieee Trans. Compon. Packag. Manuf. Technol. 1, 457 (2011)

    Article  Google Scholar 

  2. A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, C.X. Xu, Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Appl. Phys. Lett. 97, 153117 (2010)

    Article  ADS  Google Scholar 

  3. J. Fan, T. Shi, XiangXu Tao, T. Zhou, J. Li, Z. Tang, G. Liao, Yu. Xing, The Cu-Cu self-propagating reaction joining with different thickness of tin. J. Alloys Compd. 735, 1189 (2018)

    Article  Google Scholar 

  4. B.U. Hwang, K.H. Jung, K.D. Min, C.J. Lee, S.B. Jung, Pressureless Cu-Cu bonding using hybrid Cu-epoxy paste and its reliability. J. Mater. Sci.-Mater. Electron. 32, 3054 (2021)

    Article  Google Scholar 

  5. Y. Liu, Fu. Haifeng, F. Sun, H. Zhang, X. Kong, T. Xin, Microstructure and mechanical properties of as-reflowed Sn58Bi composite solder pastes. J. Mater. Process. Technol. 238, 290 (2016)

    Article  Google Scholar 

  6. J.M. Song, H.Y. Chuang, T.X. Wen, Thermal and tensile properties of Bi-Ag alloys. Metall. Mater. Trans. A 38A, 1371 (2007)

    Article  ADS  Google Scholar 

  7. X. Zhong, Wu. Xinke, W. Zhou, K. Sheng, An All-SiC high-frequency boost DC-DC converter operating at 320 degrees C junction temperature. IEEE Trans. Power Electron. 29, 5091 (2014)

    Article  ADS  Google Scholar 

  8. Z.X. Zhu, C.C. Li, L.L. Liao, C.K. Liu, C.R. Kao, Au-Sn bonding material for the assembly of power integrated circuit module. J. Alloys Compd. 671, 340 (2016)

    Article  Google Scholar 

  9. Y. Zuo, J. Shen, Xu. Heng, R. Gao, Effect of different sizes of Cu nanoparticles on the shear strength of Cu-Cu joints. Mater. Lett. 199, 13 (2017)

    Article  Google Scholar 

  10. L. Del Carro, A.A. Zinn, P. Ruch, F. Bouville, A.R. Studart, T. Brunschwiler, Oxide-free copper pastes for the attachment of large-area power devices. J. Electron. Mater. 48, 6823 (2019)

    Article  ADS  Google Scholar 

  11. Y. Mou, Y. Zhang, H. Cheng, Y. Peng, M. Chen, Fabrication of highly conductive and flexible printed electronics by low temperature sintering reactive silver ink. Appl. Surf. Sci. 459, 249 (2018)

    Article  ADS  Google Scholar 

  12. Y. Gao, W. Li, C. Chen, H. Zhang, J. Jiu, C.-F. Li, S. Nagao, K. Suganuma, Novel copper particle paste with self-reduction and self-protection characteristics for die attachment of power semiconductor under a nitrogen atmosphere. Mater. Des. 160, 1265 (2018)

    Article  Google Scholar 

  13. S. Deng, X. Zhang, G.D. Xiao, K. Zhang, X. He, S. Xin, X. Liu, A. Zhong, Y. Chai, Thermal interface material with graphene enhanced sintered copper for high temperature power electronics. Nanotechnology 32, 315710 (2021)

    Article  ADS  Google Scholar 

  14. H. Fang, C.X. Wang, S.C. Zhou, Q.S. Kang, T. Wang, D.S. Yang, Y.H. Tian, T. Suga, Rapid pressureless and low-temperature bonding of large-area power chips by sintering two-step activated Ag paste. J. Mater. Sci. Mater. Electron. 31, 6497 (2020)

    Article  Google Scholar 

  15. B. Hu, F. Yang, Y. Peng, H.J. Ji, S.H. Yang, M. Yang, M.Y. Li, Rapid formation of Cu-Cu joints with high shear strength using multiple-flocculated Ag nanoparticle paste. J. Mater. Sci. Mater. Electron. 30, 8071 (2019)

    Article  Google Scholar 

  16. K.-L. Lin, E.-Y. Chang, L.-C. Shih, Evaluation of Cu-bumps with lead-free solders for flip-chip package applications. Microelectron. Eng. 86, 2392 (2009)

    Article  Google Scholar 

  17. C.C. Yang, Y.W. Mai, Thermodynamics at the nanoscale: a new approach to the investigation of unique physicochemical properties of nanomaterials. Mater. Sci. Eng. R-Rep. 79, 1 (2014)

    Article  Google Scholar 

  18. J.T. Jiu, H. Zhang, S. Nagao, T. Sugahara, N. Kagami, Y. Suzuki, Y. Akai, K. Suganuma, Die-attaching silver paste based on a novel solvent for high-power semiconductor devices. J. Mater. Sci. 51, 3422 (2016)

    Article  ADS  Google Scholar 

  19. H.Q. Zhang, G.S. Zou, L. Liu, H. Tong, Y. Li, H.L. Bai, A.P. Wu, Synthesis of silver nanoparticles using large-area arc discharge and its application in electronic packaging. J. Mater. Sci. 52, 3375 (2017)

    Article  ADS  Google Scholar 

  20. T. Yamakawa, T. Takemoto, M. Shimoda, H. Nishikawa, K. Shiokawa, N. Terada, Influence of joining conditions on bonding strength of joints: efficacy of low-temperature bonding using Cu nanoparticle paste. J. Electron. Mater. 42, 1260 (2013)

    Article  ADS  Google Scholar 

  21. J. Liu, H. Chen, H. Ji, M. Li, Highly conductive Cu-Cu Joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles. Acs Appl. Mater. Interfaces (2016). https://doi.org/10.1021/acsami.6b10280

    Article  Google Scholar 

  22. C. Lee, N.R. Kim, J. Koo, Y.J. Lee, H.M. Lee, Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics. Nanotechnology 26, 455601 (2015)

    Article  ADS  Google Scholar 

  23. Y. Zuo, J. Shen, Hu. Youdian, R. Gao, Improvement of oxidation resistance and bonding strength of Cu nanoparticles solder joints of Cu–Cu bonding by phosphating the nanoparticle. J. Mater. Process. Technol. 253, 27 (2018)

    Article  Google Scholar 

  24. T. Ishizaki, R. Watanabe, A new one-pot method for the synthesis of Cu nanoparticles for low temperature bonding. J. Mater. Chem. 22, 25198 (2012)

    Article  Google Scholar 

  25. G. Yang, W. Lin, H. Lai, J. Tong, J. Lei, M. Yuan, Y. Zhang, C. Cui, Understanding the relationship between particle size and ultrasonic treatment during the synthesis of metal nanoparticles. Ultrason. Sonochem. 73, 105497 (2021)

    Article  Google Scholar 

  26. G. Yang, X. Zeng, P. Wang, C. Li, G. Xu, Z. Li, J. Luo, Y. Zhang, C. Cui, Size refinement of copper nanoparticles: a perspective from electrochemical nucleation and growth mechanism. ChemElectroChem 8, 819 (2021)

    Article  Google Scholar 

  27. G. Yang, G. Xu, Q. Li, Y. Zeng, Y. Zhang, M. Hao, C. Cui, Understanding the sintering and heat dissipation behaviours of Cu nanoparticles during low-temperature selective laser sintering process on flexible substrates. J. Phys. D: Appl. Phys. 54, 375304 (2021)

    Article  Google Scholar 

  28. P.M. Raj, P.R. Gangidi, N. Nataraj, N. Kumbhat, Coelectrodeposited solder composite films for advanced thermal interface materials. IEEE Trans Compon Packag Manuf Technol 3, 989 (2013)

    Article  Google Scholar 

  29. M. Grouchko, A. Kamyshny, C.F. Mihailescu, F.A. Dan, S. Magdassi, conductive inks with a “built-in” mechanism that enables sintering at room temperature. ACS Nano 5, 3354 (2011)

    Article  Google Scholar 

  30. X. Dai, T. Zhang, H. Shi, Y. Zhang, T. Wang, Reactive sintering of Cu nanoparticles at ambient conditions for printed electronics. ACS Omega 5, 13416 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the supports of Guangdong Basic and Applied Basic Research (2021A1515011642), National Natural Science Foundation of China (61874155), and the Open Project of the State Key Laboratory of Advanced Materials and Electronic Components (FHR-JS-202011005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guannan Yang or Chengqiang Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Cao, P., Lin, W. et al. Synergy effect of mixed sintering accelerator on the deoxidation and sintering property improvement of Cu nanoparticles at low temperature. Appl. Phys. A 127, 783 (2021). https://doi.org/10.1007/s00339-021-04924-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04924-9

Keywords

Navigation