Skip to main content
Log in

Decoupling the catalyst reduction and annealing for suppressing Ostwald ripening in carbon nanotube growth

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The formation and morphological control of catalyst nanoparticles (CNPs) are crucial for reliable carbon nanotube (CNT) growth. Effects of catalyst reduction and annealing on CNP formation and coarsening are key parameters that need to be elucidated. Here, we decoupled catalyst reduction and high temperature annealing of catalysts in order to investigate their roles and respective effects on CNP formation, evolution and morphology which are critical for controlling diameter-, density- and length-dependent morphologies of CNTs. We found that catalyst reduction at low temperature was not sufficient to form CNPs and it needed to be followed by exposure of Fe catalyst to high temperature for annealing. High temperature without the catalyst reduction did not help forming CNPs. When the catalyst reduction and high temperature annealing were coupled, it induced CNP coarsening via Ostwald ripening causing bimodal and sparse CNP formation. A recipe, consisting of low temperature catalyst reduction and subsequent exposure to high temperature for annealing in an inert gas environment, mitigated Ostwald ripening and was favorable to form uniform and dense CNPs. Diameters and densities of resulting CNTs showed proportionality to CNP morphologies. In addition, height of vertically aligned CNT (VACNT) forests linearly decreased with increasing catalyst reduction temperature.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O.T. Gül, K.M. Pugliese, Y. Choi, P.C. Sims, D. Pan, A.J. Rajapakse, G.A. Weiss, P.G. Collins, Single molecule bioelectronics and their application to amplification-free measurement of DNA lengths. Biosensors (2016). https://doi.org/10.3390/bios6030029

    Article  Google Scholar 

  2. M.V. Akhterov, Y. Choi, T.J. Olsen, P.C. Sims, M. Iftikhar, O.T. Gul, B.L. Corso, G.A. Weiss, P.G. Collins, Observing lysozymes closing and opening motions by high-resolution single-molecule enzymology. ACS Chem. Biol. 10, 1495–1501 (2015). https://doi.org/10.1021/cb500750v

    Article  Google Scholar 

  3. Q.Y. Meng, S. Wei, Z. Xu, Q. Cao, Y. Xiao, N. Liu, H. Liu, G. Han, J. Zhang, J. Yan, A.P. Palov, L. Wu, Hafnium oxide layer-enhanced single-walled carbon nanotube field-effect transistor-based sensing platform. Anal. Chim. Acta. 1147, 99–107 (2021). https://doi.org/10.1016/j.aca.2020.12.040

    Article  Google Scholar 

  4. D. Pan, E.J. Fuller, O.T. Gül, P.G. Collins, One-dimensional poole-frenkel conduction in the single defect limit. Nano Lett. 15, 5248–5253 (2015). https://doi.org/10.1021/acs.nanolett.5b01506

    Article  ADS  Google Scholar 

  5. A. Chortos, G.I. Koleilat, R. Pfattner, D. Kong, P. Lin, R. Nur, T. Lei, H. Wang, N. Liu, Y.C. Lai, M.G. Kim, J.W. Chung, S. Lee, Z. Bao, Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv. Mater. 28, 4441–4448 (2016). https://doi.org/10.1002/adma.201501828

    Article  Google Scholar 

  6. M. Li, H.G. Park, Improved high-rate performance of a supercapacitor electrode from manganese-oxide-coated vertically aligned carbon nanotubes prepared by a pulsed current electrodeposition method. Electrochim. Acta. 296, 676–682 (2019). https://doi.org/10.1016/j.electacta.2018.11.062

    Article  Google Scholar 

  7. H. Fu, Z.J. Du, W. Zou, H.Q. Li, C. Zhang, Simple fabrication of strongly coupled cobalt ferrite/carbon nanotube composite based on deoxygenation for improving lithium storage. Carbon N. Y. 65, 112–123 (2013). https://doi.org/10.1016/j.carbon.2013.08.006

    Article  Google Scholar 

  8. X. Cui, S. Xu, X. Wang, C. Chen, The nano-bio interaction and biomedical applications of carbon nanomaterials. Carbon N. Y. 138, 436–450 (2018). https://doi.org/10.1016/j.carbon.2018.07.069

    Article  Google Scholar 

  9. A. Antonucci, J. Kupis-Rozmysłowicz, A.A. Boghossian, Noncovalent protein and peptide functionalization of single-walled carbon nanotubes for biodelivery and optical sensing applications. ACS Appl. Mater. Interfaces. 9, 11321–11331 (2017). https://doi.org/10.1021/acsami.7b00810

    Article  Google Scholar 

  10. O. Akhavan, M. Abdolahad, Y. Abdi, S. Mohajerzadeh, Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes. J. Mater. Chem. 21, 387–393 (2010). https://doi.org/10.1039/C0JM02395G

    Article  Google Scholar 

  11. S. Chakrabarti, H. Kume, L. Pan, T. Nagasaka, Y. Nakayama, Number of walls controlled synthesis of millimeter-long vertically aligned brushlike carbon nanotubes. J. Phys. Chem. C. 111, 1929–1934 (2007). https://doi.org/10.1021/jp0666986

    Article  Google Scholar 

  12. B. Zhao, D.N. Futaba, S. Yasuda, M. Akoshima, T. Yamada, K. Hata, Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts. ACS Nano 3, 108–114 (2009). https://doi.org/10.1021/nn800648a

    Article  Google Scholar 

  13. C. Mattevi, C.T. Wirth, S. Hofmann, R. Blume, M. Cantoro, C. Ducati, C. Cepek, A. Knop-Gericke, S. Milne, C. Castellarin-Cudia, S. Dolafi, A. Goldoni, R. Schloegl, J. Robertson, In-situ X-ray photoelectron spectroscopy study of catalyst-support interactions and growth of carbon nanotube forests. J. Phys. Chem. C. 112, 12207–12213 (2008). https://doi.org/10.1021/jp802474g

    Article  Google Scholar 

  14. S. Sakurai, M. Inaguma, D.N. Futaba, M. Yumura, K. Hata, Diameter and density control of single-walled carbon nanotube forests by modulating ostwald ripening through decoupling the catalyst formation and growth processes. Small 9, 3584–3592 (2013). https://doi.org/10.1002/smll.201300223

    Article  Google Scholar 

  15. M. Schweiger, M. Schaudig, F. Gannott, M.S. Killian, E. Bitzek, P. Schmuki, J. Zaumseil, Controlling the diameter of aligned single-walled carbon nanotubes on quartz via catalyst reduction time. Carbon N. Y. 95, 452–459 (2015). https://doi.org/10.1016/j.carbon.2015.08.058

    Article  Google Scholar 

  16. R. Pezone, S. Vollebregt, P.M. Sarro, S. Unnikrishnan, The influence of H2 and NH3 on catalyst nanoparticle formation and carbon nanotube growth. Carbon N. Y. 170, 384–393 (2020). https://doi.org/10.1016/j.carbon.2020.07.045

    Article  Google Scholar 

  17. J.H. Kim, K.H. Lee, D. Burk, L.J. Overzet, G.S. Lee, The effects of pre-annealing in either H2 or He on the formation of Fe nanoparticles for growing spin-capable carbon nanotube forests. Carbon N. Y. 48, 4301–4308 (2010). https://doi.org/10.1016/j.carbon.2010.07.042

    Article  Google Scholar 

  18. D.W. Jung, K.H. Lee, J.H. Kim, D. Burk, L.J. Overzet, G.S. Lee, S.H. Kong, Optimizing control of Fe catalysts for carbon nanotube growth. J. Nanosci. Nanotechnol. 12, 5663–5668 (2012). https://doi.org/10.1166/jnn.2012.6349

    Article  Google Scholar 

  19. Seung Min Kim, L.P. Cary, B.A. Placidus, N.Z. Dmitri, H.H. Robert, B. Maruyama, E.A. Stach, Evolution in catalyst morphology leads to carbon nanotube growth termination. J Chem. Lett Phys (2010). https://doi.org/10.1021/jz9004762

    Article  Google Scholar 

  20. E.R. Meshot, L. Plata, S. Tawfick, Y. Zhang, E.A. Verploegen, A.J. Hart, Nanotube Growth by Decoupled Catalyst 3, 2477–2486 (2009)

    Google Scholar 

  21. P.W. Voorhees, The theory of Ostwald ripening. J. Stat. Phys. 38, 231–252 (1985). https://doi.org/10.1007/BF01017860

    Article  ADS  Google Scholar 

  22. A. Börjesson, K. Bolton, First principles studies of the effect of Ostwald ripening on carbon nanotube chirality distributions. ACS Nano 5, 771–779 (2011). https://doi.org/10.1021/nn101214v

    Article  Google Scholar 

  23. T. De Los Arcos, M.G. Garnier, J.W. Seo, P. Oelhafen, V. Thommen, D. Mathys, The influence of catalyst chemical state and morphology on carbon nanotube growth. J. Phys. Chem. B. 108, 7728–7734 (2004). https://doi.org/10.1021/jp049495v

    Article  Google Scholar 

  24. H. Sugime, S. Noda, S. Maruyama, Y. Yamaguchi, Multiple “optimum” conditions for Co-Mo catalyzed growth of vertically aligned single-walled carbon nanotube forests. Carbon N. Y. 47, 234–241 (2009). https://doi.org/10.1016/j.carbon.2008.10.001

    Article  Google Scholar 

  25. B. Ingham, T.H. Lim, C.J. Dotzler, A. Henning, M.F. Toney, R.D. Tilley, How nanoparticles coalesce: an in situ study of Au nanoparticle aggregation and grain growth. Chem. Mater. 23, 3312–3317 (2011). https://doi.org/10.1021/cm200354d

    Article  Google Scholar 

  26. M.L. Colaianni, P.J. Chen, J.T. Yates, Spectroscopic studies of the thermal modification of the Fe/Al2O3 interface. Surf. Sci. 238, 13–24 (1990). https://doi.org/10.1016/0039-6028(90)90061-C

    Article  ADS  Google Scholar 

  27. P.A. Thiel, M. Shen, D.J. Liu, J.W. Evans, Coarsening of two-dimensional nanoclusters on metal surfaces. J. Phys. Chem. C. 113, 5047–5067 (2009). https://doi.org/10.1021/jp8063849

    Article  Google Scholar 

  28. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005). https://doi.org/10.1016/j.physrep.2004.10.006

    Article  ADS  Google Scholar 

  29. O. Akhavan, E. Ghaderi, H. Emamy, Nontoxic concentrations of PEGylated graphene nanoribbons for selective cancer cell imaging and photothermal therapy. J. Mater. Chem. 22, 20626–20633 (2012). https://doi.org/10.1039/C2JM34330D

    Article  Google Scholar 

  30. C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber, Diameter-controlled synthesis of carbon nanotubes. J. Phys. Chem. B. 106, 2429–2433 (2002). https://doi.org/10.1021/jp0142278

    Article  Google Scholar 

  31. M. Bedewy, E.R. Meshot, H. Guo, E.A. Verploegen, W. Lu, A.J. Hart, Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth. J. Phys. Chem. C. 113, 20576–20582 (2009). https://doi.org/10.1021/jp904152v

    Article  Google Scholar 

  32. E.R. Meshot, A.J. Hart, Abrupt self-termination of vertically aligned carbon nanotube growth. Appl. Phys. Lett. 92, 90–93 (2008). https://doi.org/10.1063/1.2889497

    Article  Google Scholar 

  33. M. Bedewy, B. Farmer, A.J. John Hart, Synergetic chemical coupling controls the uniformity of carbon nanotube microstructure growth. ACS Nano. 8, 5799–5812 (2014). https://doi.org/10.1021/nn500698z

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under Career Development Program (CAREER) (grant number 118M586).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Tolga Gul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, O.T. Decoupling the catalyst reduction and annealing for suppressing Ostwald ripening in carbon nanotube growth. Appl. Phys. A 127, 762 (2021). https://doi.org/10.1007/s00339-021-04916-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04916-9

Keywords

Navigation