Skip to main content
Log in

Influence of Mg doping on the ultrafast electron dynamics of VO2 films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Broadband time-resolved measurements of pristine and Mg-doped vanadium dioxide (VO2) films are presented herein. The two films were synthesized on float glass and K-glass (SnO2 coated) substrates, respectively. Spectral and temporal dynamics of the insulator to metal transition are accessed via femtosecond pump-probe spectroscopy. Reflection and transmission signals were recorded during sample perturbation by high photon energy, 3.1 eV, laser pulses for below and above the transition threshold values of the excitation fluence. Changes of the spectral dynamics due to photoexcitation are tracked throughout the visible spectrum by use of broadband white-light supercontinuum pulses. The study demonstrates a faster temporal response of the Mg-doped film across the probed spectrum. The system is photoexcited to the metallic state reaching a plateau value in signal transmission within less than 5 ps post-pulse perturbation. These optimized trends of the Mg-doped VO2 films hold promise for applications necessitating ultrafast optical switching capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

All codes used for this study are available upon reasonable request.

References

  1. J.B. Goodenough, J. Solid State Chem. 3, 490–500 (1971)

    Article  ADS  Google Scholar 

  2. E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1–153 (2001)

    Article  ADS  Google Scholar 

  3. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039–1263 (1998)

    Article  ADS  Google Scholar 

  4. Y. Tokura, N. Nagaosa, Science 288, 462–468 (2000)

    Article  ADS  Google Scholar 

  5. H. Lu, Y. Guo, J. Robertson, Physical Review Materials, 3 (2019).

  6. V. Eyert, Ann. Phys. 11, 650–704 (2002)

    Article  Google Scholar 

  7. C.N. Berglund, H.J. Guggenheim, Phys. Rev. 185, 1022–1033 (1969)

    Article  ADS  Google Scholar 

  8. D. Vernardou, D. Louloudakis, E. Spanakis, N. Katsarakis, E. Koudoumas, Sol. Energy Mater. Sol. Cells 128, 36–40 (2014)

    Article  Google Scholar 

  9. H.W. Verleur, A.S. Barker, C.N. Berglund, Phys. Rev. 172, 788–798 (1968)

    Article  ADS  Google Scholar 

  10. D. Wegkamp, J. Stahler, Prog. Surf. Sci. 90, 464–502 (2015)

    Article  ADS  Google Scholar 

  11. Z. Yang, C. Ko, S. Ramanathan, Annu. Rev. Mater. Res. 41, 337–367 (2011)

    Article  ADS  Google Scholar 

  12. R.C. Hollins, Curr. Opin. Solid State Mater. Sci. 4, 189–196 (1999)

    Article  ADS  Google Scholar 

  13. W. Yoshiki, T. Tanabe, Opt. Express 22, 24332–24341 (2014)

    Article  ADS  Google Scholar 

  14. B. Cao, Y. Li, X. Liu, H. Fei, M. Zhang, Y. Yang, Appl. Opt. 59, 8111–8117 (2020)

    Article  ADS  Google Scholar 

  15. C. Takai, M. Senna, S. Hoshino, H. Razavi-Khosroshahi, M. Fuji, RSC Adv. 8, 21306–21315 (2018)

    Article  ADS  Google Scholar 

  16. T.-C. Chang, X. Cao, S.-H. Bao, S.-D. Ji, H.-J. Luo, P. Jin, Adv. Manuf. 6, 1–19 (2018)

    Article  Google Scholar 

  17. Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, C. Cao, Nano Energy 1, 221–246 (2012)

    Article  Google Scholar 

  18. K. Liu, S. Lee, S. Yang, O. Delaire, J. Wu, Mater. Today 21, 875–896 (2018)

    Article  Google Scholar 

  19. M.F. Jager, C. Ott, P.M. Kraus, C.J. Kaplan, W. Pouse, R.E. Marvel, R.F. Haglund, D.M. Neumark, S.R. Leone, Proc. Natl. Acad. Sci. 114, 9558–9563 (2017)

    Article  ADS  Google Scholar 

  20. T.J. Huffman, C. Hendriks, E.J. Walter, J. Yoon, H. Ju, R. Smith, G.L. Carr, H. Krakauer, M.M. Qazilbash, Phys. Rev. B 95, 075125 (2017)

    Article  ADS  Google Scholar 

  21. S. Wall, S. Yang, L. Vidas, M. Chollet, J.M. Glownia, M. Kozina, T. Katayama, T. Henighan, M. Jiang, T.A. Miller, D.A. Reis, L.A. Boatner, O. Delaire, M. Trigo, Science 362, 572–576 (2018)

    Article  ADS  Google Scholar 

  22. C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R.F. Haglund, A. Leitenstorfer, Phys. Rev. Lett. 99, 116401 (2007)

    Article  ADS  Google Scholar 

  23. H. Futaki, M. Aoki, Jpn. J. Appl. Phys. 8, 1008–1013 (1969)

    Article  ADS  Google Scholar 

  24. D. Louloudakis, D. Vernardou, E. Spanakis, M. Suchea, G. Kenanakis, M. Pemble, K. Savvakis, N. Katsarakis, E. Koudoumas, G. Kiriakidis, Adv. Mater. Lett. 7, 192–196 (2016)

    Article  Google Scholar 

  25. J. Zhou, Y. Gao, X. Liu, Z. Chen, L. Dai, C. Cao, H. Luo, M. Kanahira, C. Sun, L. Yan, Phys. Chem. Chem. Phys. 15, 7505–7511 (2013)

    Article  Google Scholar 

  26. H. Lu, S. Clark, Y. Guo, J. Robertson, Phys. Chem. Chem. Phys. 22, 13474–13478 (2020)

    Article  Google Scholar 

  27. E. Gagaoudakis, I. Kortidis, G. Michail, K. Tsagaraki, V. Binas, G. Kiriakidis, E. Aperathitis, Thin Solid Films 601, 99–105 (2016)

    Article  ADS  Google Scholar 

  28. S. Hu, S.-Y. Li, R. Ahuja, C.G. Granqvist, K. Hermansson, G.A. Niklasson, R.H. Scheicher, Appl. Phys. Lett. 101, 201902 (2012)

    Article  ADS  Google Scholar 

  29. E. Gagaoudakis, E. Aperathitis, G. Michail, G. Kiriakidis, V. Binas, Solar Energy Mater. Solar Cells 220, 110845 (2021)

    Article  Google Scholar 

  30. C. Rullière, Femtosecond Laser Pulses: Principles and Experiments (Springer, 2005)

    Book  Google Scholar 

  31. A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R.F. Haglund, R. Huber, A. Leitenstorfer, Phys. Rev. B 83, 195120 (2011)

    Article  ADS  Google Scholar 

  32. D. Wegkamp, Ultrafast electron dynamics and the role of screening, Doctoral dissertation, Freie Universität Berlin, Germany (2015). https://doi.org/10.17169/refubium-7587. https://refubium.fu-berlin.de/handle/fub188/3387

  33. S.E. Madaras, J.A. Creeden, D.J. Lahneman, A. Harbick, D.B. Beringer, M.M. Qazilbash, I. Novikova, R.A. Lukaszew, Opt Mater Express 10, 1393–1404 (2020)

    Article  ADS  Google Scholar 

  34. S. Wall, L. Foglia, D. Wegkamp, K. Appavoo, J. Nag, R.F. Haglund, J. Stähler, M. Wolf, Phys. Rev. B 87, 115126 (2013)

    Article  ADS  Google Scholar 

  35. S. Wall, D. Wegkamp, L. Foglia, K. Appavoo, J. Nag, R.F. Haglund Jr., J. Stahler, M. Wolf, Nat Commun 3, 721 (2012)

    Article  ADS  Google Scholar 

  36. P. Foggi, L. Bussotti, F.V.R. Neuwahl, Int. J. Photoenergy 3, 103–109 (2001)

    Article  Google Scholar 

  37. I. Sakellari, E. Kabouraki, D. Karanikolopoulos, S. Droulias, M. Farsari, P. Loukakos, M. Vamvakaki, D. Gray, Nanoscale Adv. 1, 3413–3423 (2019)

    Article  ADS  Google Scholar 

  38. M. Currie, M.A. Mastro, V.D. Wheeler, Opt Mater Express 7, 1697–1707 (2017)

    Article  ADS  Google Scholar 

  39. S.-Y. Li, G.A. Niklasson, C.G. Granqvist, J. Appl. Phys. 115, 053513 (2014)

    Article  ADS  Google Scholar 

  40. S. Lysenko, A.J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, H. Liu, Appl Surf Sci 252, 5512–5515 (2006)

    Article  ADS  Google Scholar 

  41. M.R. Beebe, J.M. Klopf, Y. Wang, S. Kittiwatanakul, J. Lu, S.A. Wolf, R.A. Lukaszew, Opt Mater Express 7, 213–223 (2017)

    Article  ADS  Google Scholar 

  42. M. Panagopoulou, E. Gagaoudakis, N. Boukos, E. Aperathitis, G. Kiriakidis, D. Tsoukalas, Y.S. Raptis, Sol. Energy Mater. Sol. Cells 157, 1004–1010 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Dimitris Charalambidis for useful discussions on the data analysis.

Funding

DK acknowledges financial support from the IKY doctorate scholarship that is co-financed by Greece and the European Union (European Social Fund—ESF) through the Operational Programme Human Resources Development, Education and Lifelong Learning 2014–2020. This project has received funding from the EU-H 2020 research and innovation program under Grant Agreement No. 654360 having benefited from the access provided by FORTH (Foundation for Research and Technology–Hellas) within the framework of the NFFA‐Europe Transnational Access Activity. GEK acknowledges funding from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), Under Project HANDCORE Grant Agreement No. [1789]. The authors acknowledge financial support from the European Union’s Horizon \(2020\) Research and Innovation Programme Under Grant Agreement No. 871124 Laserlab-Europe. The authors also acknowledge financial support from HELLAS-CH (MIS 5002735) implemented under “Action for Strengthening Research and Innovation Infrastructures,” funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Contributions

EK, AL and PL contributed to the study conception and design. DK and PL designed the experiment. EG, DL, KM, EA and DV prepared the samples and performed the characterization. SD elaborated the mathematical formulation. DK and MP conducted the optical experiments. KM developed the software for setup synchronization and data acquisition. DK developed the software for analysis of the data. DK, SD, GEK, CK, EK, AL and PL conducted the data analysis of the results. VB, GK, EK, AL and PL supervised the project and guided the research. All authors contributed to the discussion and preparation of the manuscript.

Corresponding author

Correspondence to Dimitris Karanikolopoulos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karanikolopoulos, D., Gagaoudakis, E., Droulias, S. et al. Influence of Mg doping on the ultrafast electron dynamics of VO2 films. Appl. Phys. A 127, 751 (2021). https://doi.org/10.1007/s00339-021-04886-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04886-y

Keywords

Navigation