Skip to main content
Log in

Effect of samarium (Sm3+) doping on structural, optical, dielectric and magnetic nature of La1.95Y0.05NiMnO6 double perovskite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Herein, we report La1.95Y0.05NiMnO6 and La1.9Sm0.05Y0.05NiMnO6 double perovskite multiferroic materials synthesized by solid-state reaction technique, which are XRD characterized for structural and phase formation studies. Rietveld refinement of XRD diffraction data infers that the samples are highly crystalline and have acquired the monoclinic structure (P 1 21/n 1). The analysis of Williamson-Hall’s plot revealed that both the samples have acquired higher crystallite size and higher tensile strain. The Raman modes at around 540–665 cm−1 presented anti-symmetric stretching and symmetric stretching modes, respectively confirming monoclinic phase. Isothermal dielectric constant study in the temperature range of 300–100 K with applied ac field varying from 100 Hz to 2 MHz infer that these samples exhibit good dielectric constant with lower loss values. Semiconducting nature of the double perovskites under observation, was verified by magnetic field dependent electrical (dc) resistivity exploiting four-probe technique. Low magnetic moment was observed with linear nature for field values in both positive and negative directions carried out at room temperature. The polarization (PE loops) study of both the samples show their lossy nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Q. Li, L. Xing, M. Xu, J. Alloys Compd. 710, 771–777 (2017)

    Article  Google Scholar 

  2. S.A. Islam, M. Ikram, Rare Met. 38, 805–813 (2019)

    Article  Google Scholar 

  3. C.L. Bull, D. Gleeson, K.S. Knight, J. Phys. Condens. Matter 15, 4927 (2003)

    Article  ADS  Google Scholar 

  4. N. Rogado, J. Li, A. Sleight, M. Subramanian, Adv. Mater. 17, 2225 (2005)

    Article  Google Scholar 

  5. M. Hashisaka, D. Kan, A. Masuno, M. Takano, Y. Shimakawa, T. Terashima, K. Mibu, Appl. Phys. Lett. 89, 032504 (2006)

    Article  ADS  Google Scholar 

  6. X.L. Wang, M. James, J. Horvat, S.X. Dou, Supercond. Sci. Technol. 15, 427 (2002)

    Article  ADS  Google Scholar 

  7. K.D. Chandrasekhar, A.K. Das, A. Venimadhav, J. Phys.: Condens. Matter 24, 376003 (2012)

    Google Scholar 

  8. M.N. Iliev, M.V. Abrashev, A.P. Litvinchuk, V.G. Hadjiev, H. Guo, A. Gupta, Phys. Rev. B 75, 104118 (2007)

    Article  ADS  Google Scholar 

  9. S. Zhou, L. Shi, H. Yang, J. Zhao, Appl. Phys. Lett. 91, 172505 (2007)

    Article  ADS  Google Scholar 

  10. P. Padhan, H.Z. Guo, P. LeClair, A. Gupta, Appl. Phys. Lett. 92, 022909 (2008)

    Article  ADS  Google Scholar 

  11. C. Baiano, E. Schiavo, C. Gerbaldi, F. Bella, G. Meligrana, G. Talarico, P. Maddalena, M. Pavone, A.B. Muñoz-García, Mol. Catal. 496, 111181 (2020)

    Article  Google Scholar 

  12. N. Mariotti, M. Bonomo, L. Fagiolari, N. Barbero, C. Gerbaldi, F. Bella, C. Barolo, Green Chem. 22, 7168 (2020)

    Article  Google Scholar 

  13. E. Pulli, E. Rozzi, F. Bella, Energy Convers. Manage. 219, 112982 (2020)

    Article  Google Scholar 

  14. M. Nasir, M. Khan, E.G. Rini et al., Appl. Phys. A 127, 208 (2021)

    Article  ADS  Google Scholar 

  15. M. Devi, A. Kumar, A. Kumar, Appl. Phys. A 126, 622 (2020)

    Article  ADS  Google Scholar 

  16. M.P. Singh, S. Charpentier, K.D. Truong, P. Fournier, Appl. Lett. 90, 211915 (2007)

    Article  ADS  Google Scholar 

  17. M. Kitamura, I. Ohkubo, M. Matsunami, K. Horiba, H. Kumigashira, Y. Matsumoto, H. Koinuma, M. Oshima, Appl. Phys. Lett. 94, 262503 (2009)

    Article  ADS  Google Scholar 

  18. D. Yang, P. Zhao, S. Huang, T. Yang, D. Huo, Results in Physics 12, 344–348 (2019)

    Article  ADS  Google Scholar 

  19. N. Nazir, M. Ikram, J Mater Sci: Mater Electron 31, 23002–23011 (2020)

    Google Scholar 

  20. S. Pal, S. Govinda, M. Goyal, S. Mukherjee, B. Pal, R. Saha, A. Sundaresan, S. Jana, O. Karis, J.W. Freeland, D.D. Sarma, Phys. Rev. B 97(1), 65137 (2018)

    Google Scholar 

  21. T. Wang, H.-Y. Wu, Y.-B. Sun, R. Xing, B. Xv, J.-J. Zhao, J. Supercond. Novel Magn. 33, 727–739 (2020)

    Article  Google Scholar 

  22. M. Saleem, S. Tiwari, M. Soni, N. Bajpai, A. Mishra, Int. J. Mod. Phys. B 34, 2050033 (2020)

    Article  ADS  Google Scholar 

  23. R. Neema, M. Saleem, P.K. Sharma, M. Mittal 1432, 12318–12329 (2021)

    Google Scholar 

  24. N. Bajpai, M. Saleem, A. Mishra, J Mater Sci: Mater Electron 32, 12890–12902 (2021)

    Google Scholar 

  25. R. Yadav, T.A. Para, H.A. Reshi, S. Pillai, V. Shelke, J Mater Sci: Mater Electron 28, 2970–2975 (2016)

    Google Scholar 

  26. R.I. Dass, J.B. Goodenough, Phys. Rev. B 67, 014401 (2003)

    Article  ADS  Google Scholar 

  27. M.A. Dar, M.W. Sheikh, M.S. Malla, D. Varshney, AIP Conf. Proceed. 1731, 140009 (2016)

    Article  Google Scholar 

  28. N. Bajpai, M. Saleem, S. Tiwari, M. Soni, A. Mishra, AIP Conf. Proceed. 2220, 040029 (2020)

    Article  Google Scholar 

  29. S. Tiwari, M. Saleem, N. Bajpai, M. Soni, A. Mishra, AIP Conf. Proceed. 2220, 040011 (2020)

    Article  Google Scholar 

  30. M. Saleem, D. Varshney, RSC Adv. 8, 1600 (2018)

    Article  ADS  Google Scholar 

  31. X. Guan, K. Chu, H. Li, X. Pu, X. Yu, S. Jin, Y. Zhu, S. Sun, J. Peng, X. Liu, J. Alloy. Compd. 876, 160173 (2021)

    Article  Google Scholar 

  32. H. Li, K. Chu, X. Pu, S. Zhang, G. Dong, Y. Liu, X. Liu, Ceram Int 46, 20640–20651 (2020)

    Article  Google Scholar 

  33. N.F. Mott, Metal-Insulator Transitions (Taylor & Francis, London, 1993)

    Google Scholar 

  34. R.N. Mahato, K. Sethupathi, V. Sankaranarayanan, J. Appl. Phys. 107, 09D714 (2010)

    Article  Google Scholar 

  35. V.L. Mathe, K.K. Patankar, S.D. Lotke, P.B. Joshi, Bull. Mater. Sci. 25, 347 (2002)

    Article  Google Scholar 

  36. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kitô, Nature 436, 1136 (2005)

    Article  ADS  Google Scholar 

  37. K. Yoshii, N. Ikeda, Y. Matsuo, Y. Horibe, S. Mori, Phys. Rev. B 76, 024423 (2007)

    Article  ADS  Google Scholar 

  38. K. Yoshii, N. Ikeda, M. Mizumaki, Phys. Stat. Sol. A 203, 2812 (2006)

    Article  ADS  Google Scholar 

  39. Y.Q. Lin, S.Y. Wu, X.M. Chen, J. Adv. Dielectr. 1, 319324 (2011)

    Article  Google Scholar 

  40. P. Kuma, S. Ghara, B. Rajeswaran, D.V.S. Muthu, A. Sundaresan, A.K. Sood, Solid State Commun. 184, 47–51 (2014)

    Article  ADS  Google Scholar 

  41. C.L. Bull et al., J. Solid State Chem. 177, 2323 (2004)

    Article  ADS  Google Scholar 

  42. L. Chauhan, A.K. Shukla, K. Sreenivas, Ceram. Int. 41, 8341–8351 (2015)

    Article  Google Scholar 

  43. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

  44. D. Choudhury, P. Mandal, R. Mathieu, A. Hazarika, S. Rajan, A. Sundaresan, U.V. Waghmare, R. Knut, O. Karis, P. Nordblad, D.D. Sarma, Phys. Rev. Lett. 108, 127201 (2012)

    Article  ADS  Google Scholar 

  45. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Dalton Trans. 44, 10457–10466 (2015)

    Article  Google Scholar 

  46. K. Yang, X. Huang, Y. Huang, L. Xie, P. Jiang, Chem. Mater. 25, 2327–2338 (2013)

    Article  Google Scholar 

  47. L.L. Hench, J.K. West, Principles of Electronic Ceramics (Wiley, New York, 1990)

    Google Scholar 

  48. V. Gupta, K.K. Bamzai, P.N. Kotru, B.M. Wanklyn, Mater. Sci. Eng., B 130, 163–172 (2006)

    Article  Google Scholar 

  49. M.M. El-Desoky, J. Phys. Chem. Solids 59, 1659–1666 (1998)

    Article  ADS  Google Scholar 

  50. S. Cetiner, S. Sirin, M. Olariu, A. S. Sarac, Adv. Polym. Technol. 35, 2153 (2016)

    Article  Google Scholar 

  51. R. Das, R.N.P. Choudhary, Process. Appl. Ceram. 13, 1–1 (2019)

    Article  Google Scholar 

  52. P.L.C. Filho, P. Barrozo, D.A. Landinez-Tellez, R.F. Jardim, W.M. Azevedo, J.A. Aguiar, J. Supercond. Nov. Magnetism 26, 2521 (2013)

    Article  Google Scholar 

  53. Y. Mao, J. Parsonsa, J.S. McCloy, Nanoscale 5, 4720 (2013)

    Article  ADS  Google Scholar 

  54. C.Y. Ma, S. Dong, P.X. Zhou, Z.Z. Du, M.F. Liu, H.M. Liu, Z.B. Yana, J.-M. Liu, Phys. Chem. Chem. Phys. 17, 20961 (2015)

    Article  Google Scholar 

  55. Y.Q. Lin, X.M. Chen, Dielectric J. Am. Ceram. Soc. 94, 782 (2011)

    Article  Google Scholar 

  56. R. Das, R.N.P. Choudhary, J. Alloys Compd. 853, 157240 (2021)

    Article  Google Scholar 

  57. M. Sono, M. Saleem, A. Mishra, J. Mol. Eng. Mater. 8, 2050004 (2020)

    Article  Google Scholar 

  58. M. Saleem, M. Padole, A. Mishra, J. Adv. Dielectrics 9, 1950034 (2019)

    Article  ADS  Google Scholar 

  59. M. Kumar, B. Prajapati, A. Singh, S. Kumar, A. Kumar, S. Mittal, Aditya Chem. Phys. 532, 110688 (2020)

    Article  Google Scholar 

  60. M. Xu, Y. Lin, W.C. Edward, Q. Lo, Z.Z. Wang, W. Xie, Appl. Phys. Lett. 100, 062406 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge UGC DAE CSR Indore as an institute for extending characterization facilities. Dr. D. M. Phase, Center Director, Dr. Mukul Gupta, Dr. Rajeev Rawat, and Dr. V. R. Reddy are acknowledged with gratitude for all the characterizations here. Special thanks are extended to the concerned engineers and researcher scholars there for guidance and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Saleem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajpai, N., Saleem, M. & Mishra, A. Effect of samarium (Sm3+) doping on structural, optical, dielectric and magnetic nature of La1.95Y0.05NiMnO6 double perovskite. Appl. Phys. A 127, 723 (2021). https://doi.org/10.1007/s00339-021-04874-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04874-2

Keywords

Navigation