Skip to main content
Log in

Calcium selective optical sensor based on calmodulin functionalized porous silicon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work an optical calcium sensor is fabricated using calmodulin surface functionalized macro-porous silicon. Porous silicon is prepared by electro-chemical etching process on silicon wafers, which were further calmodulin surface functionalized for effective calcium binding. Porous silicon provides many fold increase in surface area to volume ratio for absorption, and calmodulin provides effective calcium binding sites. Investigating with different bi-valent and mono-valent cations, the fabricated structure shows effective selectivity and multi-parametric optical response for calcium ions. Several Optical parameters such as reflectance, scattering loss and absorption loss were measured for calcium and other bi-valent and mono-valent cations at physiologically relevant concentrations, the sensor showed great discrimination towards calcium ion. Calcium being the most abundant cation present in the human body plays a significant role in cellular signalling pathways. Moreover Calcium is abundant in drinking water and is important for ecosystem maintenance. The sensor fabricated in this work finds application in calcium sensing in drinking water samples as well as in serum. Thus the sensor provides a highly sensitive, easy to use and cost-effective alternative for calcium detection and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Kim, J.W. Park, D. Kim, D. Kim, I. Lee, S. Jon, Bioinspired colorimetric detection of calcium(II) ions in serum using calsequestrin-functionalized gold nanoparticles. Angew. Chem. Int 48, 4138–4141 (2009)

    Article  Google Scholar 

  2. M.S. Eom, W. Jang, Y.S. Lee, G. Choi, Y. Kwon, M.S. Han, A bi-ligand co-functionalized gold nanoparticles-based calcium ion probe and its application to the detection of calcium ions in serum. Chem. Comm 48, 5566–5568 (2012)

    Article  Google Scholar 

  3. T. Atanasijevic, M. Shusteff, P. Fam, A. Jasanoff, Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. PNAS 103(40), 14707–14712 (2006)

    Article  ADS  Google Scholar 

  4. S.J. Kim, J. Blumling, M.C. Davidson, H. Saad, S.Y. Eun, G.A. Silva, Calcium and EDTA induced folding and unfolding of calmodulin on functionalized quantum dot surfaces. J. Nanoneurosci. 2, 1–7 (2012)

    Article  Google Scholar 

  5. S.A. Razavi, L. Hoghooghirad, H. Golab-Ghadaksaz, M. Hedayati, Calcium determination in EDTA treated plasma by colorimetric method and microplate reading format. Zahedan J. Res. Med. Sci. 17(2), 7–10 (2015)

    Google Scholar 

  6. Y. Guo, X. Tong, L. Ji, Z. Wang, H. Wang, J. Hu, R. Pei, Visual detection of Ca2+ based on aggregation-induced emission of Au(I)–Cys complexes with superb selectivity. Chem. Commun 51, 596–598 (2015)

    Article  Google Scholar 

  7. J. Matsumoto, T. Kojima, T. Shimizu, S. Kitashiro, K. Konishi, Y. Matsumura, Y. Kawarada, H. Ikeda, T. Yoshiki, A case of lung cancer with hypercalcemia which was incidentally complicated with primary hyperparathyroidism due to parathyroid adenoma. Ann Thorac Cardiovasc Surg 8(3), 151–153 (2002)

    Google Scholar 

  8. D. Seccareccia, Cancer-related hypercalcemia. Can Fam Physician 56(3), 244–246 (2010)

    Google Scholar 

  9. W. Goldner, Cancer-related hypercalcemia. J. Oncol. Practice 12(5), 426–432 (2016)

    Article  Google Scholar 

  10. S. Nemr, S. Alluri, D. Sundaramurthy, D. Landry, G. Braden, Hypercalcemia in lung cancer due to simultaneously elevated PTHrP and ectopic calcitriol production: first case report. Case Rep. Oncol. Med. 2017, 1–3 (2017)

    Google Scholar 

  11. J. Zagzag, M.I. Hu, S.B. Fisher, N.D. Perrier, Hypercalcemia and cancer: differential diagnosis and treatment. CA A Cancer J. Clinic. 68, 377–386 (2018)

    Article  Google Scholar 

  12. G.P. Cartoni, F. Coccioli, Characterization of mineral waters by high-performance liquid chromatography. J. Chromatogr. A 360, 225–230 (1986)

    Article  Google Scholar 

  13. M.J.A. Shiddiky, A.A.J. Torriero, Application of ionic liquids in electrochemical sensing systems. Biosens. Bioelectron 26, 1775–1787 (2011)

    Article  Google Scholar 

  14. A.H. Ismail, C. Schafer, A. Heiss, M. Walter, W. Jahnen-Dechent, S. Leonhardt, An electrochemical impedance spectroscopy (EIS) assay measuring the calcification inhibition capacity in biological fluids. Biosens. Bioelectron. 26, 4702–4707 (2011)

    Article  Google Scholar 

  15. R. Ahmad, N. Tripathy, M.S. Ahn, J.Y. Yoo, Y.B. Hahn, Preparation of a highly conductive seed layer for calcium sensor fabrication with enhanced sensing performance. Acs Sensors 3, 772–778 (2018)

    Article  Google Scholar 

  16. S.Y. Lin, S.W. Liu, C.M. Lin, C.H. Chen, Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles. Anal. Chem 74, 330–335 (2002)

    Article  Google Scholar 

  17. P.J. Greenawalt, S. Amemiya, Voltammetric mechanism of multiion detection with thin ionophore-based polymeric membrane. Anal. Chem. 88, 5827–5834 (2016)

    Article  Google Scholar 

  18. M. Moirangthem, R. Arts, M. Merkx, A.P.H.J. Schenning, An Optical sensor based on a photonic polymer film to detect calcium in serum. Adv. Func. Mater. 26, 1154–1160 (2016)

    Article  Google Scholar 

  19. X. Hun, Z. Zhang, Preparation of a novel fluorescence nanosensor based on calcein-doped silica nanoparticles, and its application to the determination of calcium in blood serum. Microchim Acta 159, 255–261 (2007)

    Article  Google Scholar 

  20. H. Buening-Pfaue, Analysis of water in food by near infrared spectroscopy. Food Chem. 82, 107–115 (2003)

    Article  Google Scholar 

  21. V.K. Johns, P.K. Patel, S. Hassett, P. Calvo-Marzal, Y. Qin, K.Y. Chumbimuni-Torres, Visible light activated ion sensing using a photoacid polymer for calcium detection. Anal. Chem. 86, 6184–6187 (2014)

    Article  Google Scholar 

  22. H.A. Hadi, T.H. Abood, A.T. Mohi, M.S. Karim, Impact of the etching time and current density on capacitance-voltage characteristics of P-type of porous silicon. World Scientific News 67(2), 149–160 (2017)

    Google Scholar 

  23. S.J. Kim, B.H. Jeon, K.S. Choi, N.K. Min, Capacitive porous silicon sensors for measurement of low alcohol gas concentration at room temperature. J Solid State Electrochem 4, 363–366 (2000)

    Article  Google Scholar 

  24. D. Basu, T. Sarkar, K. Sen, S.M. Hossain, J. Das, Multi-parametric optical glucose sensor based on surface functionalized nano-porous silicon. IEEE Sens J. 18, 24 (2018)

    Google Scholar 

  25. R.C. Anderson, R.S. Muller, C.W. Tobias, Investigations of the electrical properties of porous silicon. J. Electrochem. Soc. 138(11), 3406–3411 (1991)

    Article  ADS  Google Scholar 

  26. H. Saha, S.K. Dutta, S.M. Hossain, S. Chakarborty, A. Saha, Mechanism and control of formation of porous silicon on p- type Si. Bull. Mater. Sci. 21(3), 195–201 (1998)

    Article  Google Scholar 

  27. T. Sarkar, D. Basu, N. Mukherjee, J. Das, Comparison of glucose sensitivity of nano and macro porous silicon. Materials today proceedings. 5(3), 9798–9803 (2018)

    Article  Google Scholar 

  28. X. Yang, F. Xi, X. Chen, S. Li, X. Wan, W. Ma, P. Dong, J. Duan, Y. Chang, Porous silicon fabrication and surface cracking behavior research based on anodic electrochemical etching. Fuel Cells 21(7), 52–57 (2020)

    Google Scholar 

  29. H. Foell, M. Christophersen, J. Carstensen, G. Hasse, Formation and application of porous silicon. Mater. Sci. Eng. R. Rep. 39(4), 93–141 (2002)

    Article  Google Scholar 

  30. P. Sarafis, E. Hourdakis, A.G. Nassiopoulou, Dielectric permittivity of porous Si for use as substrate material in Si-integrated RF devices. IEEE Trans. Electron Devices 60(4), 1436–1443 (2013)

    Article  ADS  Google Scholar 

  31. M. Hiraoui, M. Guendouz, N. Lorrain, A. Moadhen, L. Haji, M. Oueslati, Spectroscopy studies of functionalized oxidized porous silicon surface for biosensing applications. Mater. Chem. Phys. 128, 151–156 (2011)

    Article  Google Scholar 

  32. M. Zhang, C. Abrams, L. Wang, A. Gizzi, L. He, R. Lin, Y. Chen, P.J. Loll, J.M. Pascal, J. Zhang, Structural basis for calmodulin as a dynamic calcium sensor. Structure 20(5), 911–923 (2012)

    Article  Google Scholar 

  33. D. Chin, A.R. Means, Calmodulin: a prototypical calcium sensor. Trends in Cell Biology 10, 322–328 (2000)

    Article  Google Scholar 

  34. T.W. Lin, P.J. Hsieh, C.L. Lin, Y.Y. Fang, J.X. Yang, C.C. Tsai, P.L. Chiang, C.Y. Pan, Y.T. Chen, Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor’. PNAS 107(3), 1047–1052 (2010)

    Article  ADS  Google Scholar 

  35. W. Hall, J. Modica, J. Anker, Y. Lin, M. Mrksich, R.P.V. Duyne, Biosensing with a calmodulin-functionalized plasmonic switch. Nano Lett. 11(3), 1098–1105 (2011)

    Article  ADS  Google Scholar 

  36. M. Khardani, M. Bouaïcha, B. Bessaïs, Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment. Phys. Status Solidi C 4(6), 1986–1990 (2007)

    Article  ADS  Google Scholar 

  37. K. Zaki, A. Neureuther, Scattering from a perfectly conducting surface with a sinusoidal height profile: TE polarization. IEEE Trans. Antennas Propag. 19(2), 208–214 (1971)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the RUSA program, Govt. of India. The authors wish to acknowledge Department of Physics, IIEST Shibpur, for providing support as and when required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayoti Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, K., Basu, D., Hossain, S.M. et al. Calcium selective optical sensor based on calmodulin functionalized porous silicon. Appl. Phys. A 127, 768 (2021). https://doi.org/10.1007/s00339-021-04869-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04869-z

Keywords

Navigation