Skip to main content
Log in

First principles calculations of electrical and optical properties of Cu3N/MoS2 heterostructure with tunable bandgaps

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, based on the first principle calculation of density-functional theory (DFT), the surface energy of the low index surfaces of Cu3N and MoS2 is calculated, and the binding energy, interlayer distance, band structure, density of state, electron density difference and optical properties of the Cu3N/MoS2 heterostructure are systematically studied. The results show that different stacking and interlayer distance will affect the stability of the heterostructure. In addition, the change of the interlayer distance will also lead to the change of bandgap. It shows that the Cu3N/MoS2 heterostructure has the property of tunable bandgaps. Through the analysis of the imaginary part of dielectric function and optical absorption coefficient, Cu3N/MoS2 heterostructure has good optical properties in ultraviolet, visible and infrared regions, and has strong absorption ability for visible light. In a word, Cu3N/MoS2 heterostructure has stable structure and excellent photoelectric performance, which has a good potential and broad application prospect in photoelectric devices, visible light absorption and infrared light conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6

Similar content being viewed by others

References

  1. Q.Y. Jing Liqiang, W. Baiqi, Li. Shudan, J. Baojiang, Fu. Yang Libin, W.F. Honggang, S. Jiazhong, Sol. Energy Mater. Sol. Cells 90(12), 1773 (2006)

    Article  Google Scholar 

  2. L.W. Yan Shicheng, Li. Chaosheng, Z. Zhigang, Mater. China 29(1), 1 (2010)

    Google Scholar 

  3. M.M. Obeid, A. Bafekry, S.U. Rehman, C. Nguyen, V, Appl. Surf. Sci. 534, 147606 (2020)

    Article  Google Scholar 

  4. B. Wang, X. Li, X. Cai, W. Yu, L. Zhang, R. Zhao, S. Ke, J. Phys. Chem. C 122(13), 7075 (2018)

    Article  Google Scholar 

  5. A.K.G.K.S. Novoselov, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 2004(5696), 666 (2004)

    Article  ADS  Google Scholar 

  6. D.J.K.S. Novoselov, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451 (2005)

    Article  ADS  Google Scholar 

  7. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7(11), 699 (2012)

    Article  ADS  Google Scholar 

  8. Q.Z. Rudren Ganatra, ACS Nano 8(5), 4074 (2014)

    Article  Google Scholar 

  9. J.X. Chenyang Gong, L. Zhu, Z. Wang, S. Ma, Coatings 9(9), 570 (2019)

    Article  Google Scholar 

  10. W.H. Li Yanguang, X. Liming, L. Yongye, H. Guosong, D. Hongjie, J. Am. Chem. Soc. 133(19), 7296 (2011)

    Article  Google Scholar 

  11. P.M. Bernardi, G. Marco, C. Jeffrey, Nano Lett. 13(8), 3664 (2013)

    Article  ADS  Google Scholar 

  12. R.A. Radisavljevic B, Brivio J, Giacometti V, Kis A (2011). Nature Nanotechnol. 6(3) 147.

  13. E.M. Sundaram R. S., Lombardo A., Krupke R., Ferrari A. C., Avouris Ph., Steiner M. (2013). Nano Letters. 13(4), 1416.

  14. H.M. Li Hongxing, C. Gengyu, Phys. Chem. Chem. Phys. 18(22), 15110 (2016)

    Article  Google Scholar 

  15. Z.J. Zhao Yanghua, Y. Tao, Z. Jian, Y. Jianping, Li. Xing’ao, Ceram. Int. 42(3), 4486 (2016)

    Article  Google Scholar 

  16. A.J. Navio C, Capitan M.J, Camarero J, Miranda R (2009). Appl. Phys. Lett. 94 (2009) (26) 2472.

  17. D.L. Pereira N, Tarascon JM, Klein LC, Amatucci GG (2003). J. Electroche. Soc. 150(9) A1273.

  18. L.J. He Haiyong, Fu Wei, Wang Xingli, Wang Hong, Zeng Qingsheng, Gu Quan, Li Yongmei, YanCheng, Beng Kang Tay, Xue Can, Hu Xiao, Sokrates T. Pantelides, Zhou Wu, Liu Zheng (2016), Adv. Energy Mater. 6.

  19. B.D. Jingxiang Low, T. Tong, C. Jiang, Yu. Jiaguo, Adv. Mater. 31(6), 1802981 (2018)

    Google Scholar 

  20. H.H. Binbin Su, Z. Ye, Mater. Lett. 253, 187 (2019)

    Article  Google Scholar 

  21. R.H. Dion M, Schroeder E, DC Langreth, BI Lundqvist (2004). Phys. Rev. Lett. 92 (24) 246401.

  22. Xiaolong Z. Aihu Xiong (2019). J. Comput. Electron. 18(3) 1.

  23. Xiaolong Z. Fang Yao, Aihu Xiong (2020). Appl. Phys. A 126(501).

  24. X.C. Liwen Zhu, Chenyang Gong, Aihua Jiang, Yong Cheng, Jianrong Xiao (2020). Materials 13(8).

  25. W. Kohn, L.J. Sham, Phys. Rev. Lett. 140, 1133 (1965)

    ADS  Google Scholar 

  26. M. Segall, P. Lindan, M. Probert, C. Pickard, P. Hasnip, S. Clark, M. Payne, J. Phy.-Condensed Matter 14(11), 2717 (2002)

    Article  ADS  Google Scholar 

  27. B.K. Perdew JP, Ernzerhof M (1996). Acs Symposium. 629, 453.

  28. P.J. P, B. K, E. M, Physical Review Letters 80 (1998) (4) 891.

  29. P.J. P, B. K, E. M (1996). Physical Review Letters. 77(18), 3865.

  30. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phy. 124(21), 219906 (2006)

    Article  ADS  Google Scholar 

  31. M. Friak, M. Sob, V. Vitek, Phys. Rev. B 68, 18 (2003)

    Article  Google Scholar 

  32. L.G.H.J. Donald J Siegela, James B Adamsc (2002). Surface Science 498(3), 321

  33. Z.M. He Jusheng, Xiao Qiling (2006). Journal of Nanchang University(Natural Science). 30(1), 67.

  34. J. Shang, L. Pan, X. Wang, J. Li, H.-X. Deng, Z. Wei, J. Mater. Chem. C 6(27), 7201 (2018)

    Article  Google Scholar 

  35. B. Lange, C. Freysoldt, J. Neugebauer, Phys. Rev. B 81, 22 (2010)

    Google Scholar 

  36. C. Zhang, Y. Zhou, Y. Zhang, S. Zhao, J. Fang, X. Sheng, H. Zhang, Acs Sustain. Chem. Eng. 5(2), 1578 (2017)

    Article  Google Scholar 

  37. M. Gratzel, Nature 414(6861), 338 (2001)

    Article  ADS  Google Scholar 

  38. M.A. Hassan, J.-H. Kang, M.A. Johar, J.-S. Ha, S.-W. Ryu, Acta Mater. 146, 171 (2018)

    Article  ADS  Google Scholar 

  39. M. Fadaie, Shahtahmassebi, M.R. Roknabad (2016). Optical and Quantum Electronics. 48(9).

  40. M. Sun, J.-P. Chou, J. Gao, Y. Cheng, A. Hu, W. Tang, G. Zhang, ACS Omega 3(8), 8514 (2018)

    Article  Google Scholar 

  41. S. Sun, F. Meng, H. Wang, H. Wang, Y. Ni, J. Mater. Chem. A 6(25), 11890 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Zhou.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhou, X. First principles calculations of electrical and optical properties of Cu3N/MoS2 heterostructure with tunable bandgaps. Appl. Phys. A 127, 693 (2021). https://doi.org/10.1007/s00339-021-04858-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04858-2

Keywords

Navigation