Skip to main content
Log in

Nanoengineering of new cost-effective nanosensor based on functionalized MWCNT and Ag nanoparticles for sensitive detection of BPA in drinking water

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel nanosensor for the detection of bisphenol A (BPA) in drinking water has been developed using functionalized multiwalled carbon nanotube (f-MWCNT)- and silver nanoparticles (AgNPs)-modified glassy carbon electrode (GCE). Functionalized and unfunctionalized MWCNT were characterized by Fourier transform infrared spectroscopy (FTIR) and Energy-Dispersive X-ray Analysis (EDAX). Morphological characterization of f-MWCNT and AgNPs/f-MWCNT was investigated by Transmission Electron Microscopy (TEM). The electrochemical behavior of the developed sensor toward BPA was examined by Cyclic Voltammetry (CV). The equivalent electrical circuit was demonstrated using Electrochemical Impedance Spectroscopy (EIS). Several important parameters controlling the performance of the sensor were investigated, such as the different numbers of deposited AgNPs layers, the effect of the scan rate, and the influence of the pH. Under optimized measurement conditions, the sensor showed a wide linear range response of BPA (70 nM–6000 nM) and a low limit of detection (LOD) of 40 nM. AgNPs/f-MWCNT/GCE sensor shows high stability, reproducibility, repeatability, and selectivity. The proposed procedure was successfully applied to detect BPA in drinking water with satisfactory recovery data results.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available.

References

  1. Z. Zhao, L. Yang, J. Hu, H. Wang, J. Dong, X. Wan, Z. Cai, M. Li, Electroanalysis 32, 1 (2020)

    Article  Google Scholar 

  2. S. Güney, O. Güney, Electroanalysis 29, 2579 (2017)

    Article  Google Scholar 

  3. N. Ben Messaoud, A. Ait Lahcen, C. Dridi, and A. Amine, Sens. (2018) Actuators B Chem. 276: 304.

  4. X. Tu, L. Yan, X. Luo, S. Luo, and Q. Xie. (2009) Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 21, 2491.

  5. K.V. Ragavan, N.K. Rastogi, M.S. Thakur, TrAC. Trends Anal. Chem. 52, 248 (2013)

    Article  Google Scholar 

  6. N. B. Messaoud, A. Baraket, C. Dridi, Naglaa. M. Nooredeen, M. N. Abbas, J. Bausells, A. Streklas, A. Elaissari, and A. Errachid. (2018). Electroanalysis. 30: 901.

  7. D. Jemmeli, E. Marcoccio, D. Moscone, C. Dridi, and F. Arduini, Talanta 216, 120924 (2020).

  8. S. Sabir, M.F. Akhtar, A. Saleem, Environ. Sci. Pollut. Res. 26, 1277 (2019)

    Article  Google Scholar 

  9. R. Wannapob, P. Thavarungkul, S. Dawan, A. Numnuam, W. Limbut, P. Kanatharana, Electroanalysis 29, 472 (2017)

    Article  Google Scholar 

  10. A. G. F. Friques, F. D. N. Santos, D. B. Angeli, F. A. C. Silva, A. T. Dias, R. Aires, M. A. S. Leal, B. V. Nogueira, F. G. Amorim, B. P. Campagnaro, T. M. C. Pereira, M. Campos-Toimil, S. S. Meyrelles, and E. C. Vasquez. (2020) J. Nutr. Biochem. 75: 108254.

  11. M. Kaykhaii, E. Yavari, G. Sargazi, A.K. Ebrahimi, J. Chromatogr. Sci. 58, 373 (2020)

    Article  Google Scholar 

  12. Z. Xiao, R. Wang, D. Suo, T. Li, and X. Su. (2020) Food Chem. 327: 126882.

  13. H. Ali, S. Mukhopadhyay, N.R. Jana, New J. Chem. 43, 1536 (2019)

    Article  Google Scholar 

  14. N.E.A.M. Subuhi, S.M. Saad, N.N.M. Zain, V. Lim, M. Miskam, S. Kamaruzaman, M. Raoov, N. Yahaya, J. Sep. Sci. 43, 1 (2020)

    Article  Google Scholar 

  15. Y.F. Zhuang, G.P. Cao, J.Y. Mao, B.L. Liu, J. Appl. Spectrosc. 85, 1094 (2019)

    Article  ADS  Google Scholar 

  16. B. Su, H. Shao, N. Li, X. Chen, Z. Cai, X. Chen, Talanta 166, 126 (2017)

    Article  Google Scholar 

  17. T. Zhan, Y. Song, Z. Tan, W. Hou, Sens. Actuators B Chem. 238, 962 (2017)

    Article  Google Scholar 

  18. N. Ben Messaoud, M. E. Ghica, C. Dridi, M. Ben Ali, and C. M. A. Brett. (2018) Talanta 184: 388.

  19. F. Aberkane, A. Barakat, A. Elaissari, N. Zine, T. Bendaikha, A. Errachid, Electroanalysis 31, 2112 (2019)

    Article  Google Scholar 

  20. L. Vieira Jodar, L. O. Orzari, T. Storti Ortolani, M. H. M. T. Assumpção, F. C. Vicentini, and B. C. Janegitz. (2019) Electroanalysis. 31: 2162.

  21. Y. Li, T. Xia, J. Zhang, Y. Cui, B. Li, Y. Yang, G. Qian, J. Solid State Chem. 275, 38 (2019)

    Article  ADS  Google Scholar 

  22. D. Ahirwar, M. Bano, I. Khan, S.S. Gound, M.U.D. Sheikh, R. Mondal, F. Khan, J. Solid State Chem. 273, 233 (2019)

    Article  ADS  Google Scholar 

  23. P.M. Ajayan, Chem. Rev. 99, 1787 (1999)

    Article  Google Scholar 

  24. B.Q. Wei, R. Vajtai, P.M. Ajayan, Appl. Phys. Lett. 79, 1172 (2001)

    Article  ADS  Google Scholar 

  25. M. Zhao, Y. Chen, K. Wang, Z. Zhang, J.K. Streit, J.A. Fagan, J. Tang, M. Zheng, C. Yang, Z. Zhu, W. Sun, Science 368, 878 (2020)

    Article  ADS  Google Scholar 

  26. H. Wang, C. Peng, F. Peng, H. Yu, J. Yang, Mater. Sci. Eng. B 176, 1073 (2011)

    Article  Google Scholar 

  27. A. Pal, A. Sasmal, B. Manoj, D. P. Rao, A. K. Haldar, and S. Sen. (2020) Mater. Chem. Phys. 244: 122639.

  28. M.C. Schulze, R.M. Belson, L.A. Kraynak, A.L. Prieto, Energy Storage Mater. 25, 572 (2020)

    Article  Google Scholar 

  29. Y.-C. Wang, D. Cokeliler, S. Gunasekaran, Electroanalysis 27, 2527 (2015)

    Article  Google Scholar 

  30. D. Wang, B. Huang, J. Liu, X. Guo, G. Abudukeyoumu, Y. Zhang, B.-C. Ye, Y. Li, Biosens. Bioelectron. 102, 389 (2018)

    Article  Google Scholar 

  31. M. Y. Ali, A. U. Alam, and M. M. R. Howlader. (2020) Sens. Actuators B Chem. 320: 128319.

  32. F. Mo, J. Xie, T. Wu, M. Liu, Y. Zhang, S. Yao, Food Chem. 292, 253 (2019)

    Article  Google Scholar 

  33. Y. Xing, G. Wu, Y. Ma, Y. Yu, X. Yuan, and X. Zhu. (2019) Measurement 148 : 106940.

  34. S. Lu, J. Ma, K. Ma, X. Wang, S. Wang, X. Yang, H. Tang, Appl. Phys. A 125, 1 (2019)

    Article  ADS  Google Scholar 

  35. S. Nantaphol, O. Chailapakul, W. Siangproh, Sens. Actuators B Chem. 207, 193 (2015)

    Article  Google Scholar 

  36. S. Cheng, H. Liu, H. Zhang, G. Chu, Y. Guo, and X. Sun. (2020) Sens. Actuators B Chem. 304 : 127367.

  37. S. Gupta, R. Singh, M.D. Anoop, V. Kulshrestha, D.N. Srivastava, K. Ray, S.L. Kothari, K. Awasthi, M. Kumar, Appl. Phys. A 124, 1 (2018)

    Article  Google Scholar 

  38. H. Zhang, D. Sun, T. Cao, Int J Electrochem Sci 15, 3434 (2020)

    Article  Google Scholar 

  39. N.D. Nguyen, T.V. Nguyen, A.D. Chu, H.V. Tran, L.T. Tran, C.D. Huynh, Arab. J. Chem. 11, 1134 (2018)

    Article  Google Scholar 

  40. X. Ren, X. Meng, D. Chen, F. Tang, J. Jiao, Biosens. Bioelectron. 21, 433 (2005)

    Article  Google Scholar 

  41. S. Raina, A. Roy, and N. Bharadvaja. (2020) Environ. Nanotechnol. Monit. Manag. 13 : 100278.

  42. R. Choukade, A. Jaiswal, and N. Kango.(2020) 3 Biotech. 10 : 462.

  43. A. Salleh, R. Naomi, N.D. Utami, A.W. Mohammad, E. Mahmoudi, N. Mustafa, M.B. Fauzi, Nanomaterials 10, 1566 (2020)

    Article  Google Scholar 

  44. F. Pogacean, A. R. Biris, C. Socaci, M. Coros, L. Magerusan, M.-C. Rosu, M. D. Lazar, G. Borodi, and S. Pruneanu. (2016) Nanotechnology. 27 : 484001.

  45. M. Baccarin, M. A. Ciciliati, O. N. Oliveira, E. T. G. Cavalheiro, and P. A. Raymundo-Pereira. (2020) Mater. Sci. Eng. C. 114 : 110989.

  46. Z. Wang, R. Yan, S. Liao, Y. Miao, B. Zhang, F. Wang, H. Yang, Appl. Surf. Sci. 457, 323 (2018)

    Article  ADS  Google Scholar 

  47. A.M. Santos, A. Wong, O. Fatibello-Filho, J. Electroanal. Chem. 824, 1 (2018)

    Article  Google Scholar 

  48. M. Zhou, L. Han, D. Deng, Z. Zhang, H. He, L. Zhang, L. Luo, Sens. Actuators B Chem. 291, 164 (2019)

    Article  Google Scholar 

  49. M.E. Ghica, C.M.A. Brett, Anal. Lett. 46, 1379 (2013)

    Article  Google Scholar 

  50. N.B. Messaoud, M.E. Ghica, C. Dridi, M.B. Ali, C.M. Brett, Sens. Actuators B Chem. 253, 513 (2017)

    Article  Google Scholar 

  51. M.A. Akl, A.M. Abou-Elanwar, J. Nanomedicine Nanotechnol. 6, 1 (2015)

    Google Scholar 

  52. L. Stobinski, B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski, J. Judek, J. Alloys Compd. 501, 77 (2010)

    Article  Google Scholar 

  53. M. Azadbakht, E. Esmizadeh, A. Vahidifar, T.H. Mekonnen, M. Salami-Kalajahi, Processes 9, 459 (2021)

    Article  Google Scholar 

  54. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 106, 1105 (2006)

    Article  Google Scholar 

  55. I. Amin, S. M. El-Badawy, T. Breakah, and M. H. Z. Ibrahim, Am. J. Civ. Eng. Archit. 9 (n.d.).

  56. B.P. Singh, V. Choudhary, S. Teotia, T.K. Gupta, V.N. Singh, S.R. Dhakate, R.B. Mathur, Adv. Mater. Lett. 6, 104 (2015)

    Article  Google Scholar 

  57. A. Alahmad, A. Feldhoff, N.C. Bigall, P. Rusch, T. Scheper, J.-G. Walter, Nanomaterials 11, 487 (2021)

    Article  Google Scholar 

  58. R. Chen, N. T. Nuhfer, L. Moussa, H. R. Morris, and P. M. Whitmore. (2008) Nanotechnology. 19 : 455604.

  59. M. Zienkiewicz-Strzałka, A. Deryło-Marczewska, Y.A. Skorik, V.A. Petrova, A. Choma, I. Komaniecka, Int. J. Mol. Sci. 21, 166 (2019)

    Article  Google Scholar 

  60. S.S. Bayram, K. Lindfors, A.S. Blum, Beilstein J. Nanotechnol. 7, 1219 (2016)

    Article  Google Scholar 

  61. C. Pérez-Ràfols, J. Bastos-Arrieta, N. Serrano, J. Díaz-Cruz, C. Ariño, J. de Pablo, M. Esteban, Sensors 17, 1458 (2017)

    Article  ADS  Google Scholar 

  62. J.-W. Shin, K.-J. Kim, J. Yoon, J. Jo, W.A. El-Said, J.-W. Choi, Sensors 17, 2771 (2017)

    Article  ADS  Google Scholar 

  63. J. Zou, G.-Q. Zhao, J. Teng, Q. Liu, X.-Y. Jiang, F.-P. Jiao, J.-G. Yu, Microchem. J. 145, 693 (2019)

    Article  Google Scholar 

  64. K.-J. Huang, Y.-J. Liu, Y.-M. Liu, L.-L. Wang, J. Hazard. Mater. 276, 207 (2014)

    Article  Google Scholar 

  65. Y. Lin, K. Liu, C. Liu, L. Yin, Q. Kang, L. Li, B. Li, Electrochim. Acta 133, 492 (2014)

    Article  ADS  Google Scholar 

  66. Y. Li, Y. Gao, Y. Cao, H. Li, Sens. Actuators B Chem. 171–172, 726 (2012)

    Article  Google Scholar 

  67. J. Li, D. Kuang, Y. Feng, F. Zhang, M. Liu, Microchim. Acta 172, 379 (2011)

    Article  Google Scholar 

  68. E. Laviron, J. Electroanal. Chem. Interfacial Electrochem. 101, 19 (1979)

    Article  Google Scholar 

  69. H. Yin, Y. Zhou, S. Ai, Q. Chen, X. Zhu, X. Liu, L. Zhu, J. Hazard. Mater. 174, 236 (2010)

    Article  Google Scholar 

  70. Y. Gao, Y. Cao, D. Yang, X. Luo, Y. Tang, H. Li, J. Hazard. Mater. 199, 111 (2012)

    Article  Google Scholar 

  71. Z. Zheng, Y. Du, Z. Wang, Q. Feng, C. Wang, Analyst 138, 693 (2013)

    Article  ADS  Google Scholar 

  72. Q. Wang, Y. Wang, S. Liu, L. Wang, F. Gao, F. Gao, W. Sun, Thin Solid Films 520, 4459 (2012)

    Article  ADS  Google Scholar 

  73. C. Hou, W. Tang, C. Zhang, Y. Wang, N. Zhu, Electrochim. Acta 144, 324 (2014)

    Article  Google Scholar 

  74. E. Mazzotta, C. Malitesta, E. Margapoti, Anal. Bioanal. Chem. 405, 3587 (2013)

    Article  Google Scholar 

  75. W. Wang, X. Yang, Y. Gu, C. Ding, J. Wan, Ionics 21, 885 (2015)

    Article  Google Scholar 

  76. A.M. Campos, P.A. Raymundo-Pereira, F.H. Cincotto, T.C. Canevari, S.A. Machado, J. Solid State Electrochem. 20, 2503 (2016)

    Article  Google Scholar 

  77. H. Beitollahi, S. Tajik, S. Jahani, F.G. Najed, Anal. Bioanal. Electrochem. 10, 1108 (2018)

    Google Scholar 

  78. P. Kanagavalli and S. Senthil Kumar.(2018) Electroanalysis. 30 : 445.

  79. Y. Li, H. Wang, B. Yan, H. Zhang, J. Electroanal. Chem. 805, 39 (2017)

    Article  Google Scholar 

  80. L.A. Goulart, L.H. Mascaro, Electrochim. Acta 196, 48 (2016)

    Article  Google Scholar 

  81. S. Jebril, L. Cubillana-Aguilera, J. M. Palacios-Santander, and C. Dridi. (2021) Mater. Sci. Eng. B. 264 : 114951.

  82. Z. Chen, H. Huang, Y. Chen, Y. Ye, S. Wu, W. Wang, Y. Hu, J. Nanosci. Nanotechnol. 20, 7610 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Tunisian Ministry of Higher Education and Scientific Research for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Menyar Ben Jaballah was involved in investigation, data curation and writing—original draft. Chérif Dridi was involved in supervising, conceptualization, methodology and funding acquisition. Najib Ben Messaoud and Chérif Dridi were involved in writing—review & editing and collected resources.

Corresponding author

Correspondence to Chérif Dridi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Jaballah, M., Ben Messaoud, N. & Dridi, C. Nanoengineering of new cost-effective nanosensor based on functionalized MWCNT and Ag nanoparticles for sensitive detection of BPA in drinking water. Appl. Phys. A 127, 713 (2021). https://doi.org/10.1007/s00339-021-04857-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04857-3

Keywords

Navigation