Skip to main content
Log in

Structural, microstructural, chemical, and optical properties of NiO nanocrystals and films obtained by 3D printing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we have investigated the chemical and phase composition, surface morphology, structural, microstructural, and optical properties of NiO nanocrystals and thin films which were obtained using the solgel synthesis method and 3D printing technique, respectively. To optimize their structural properties, the samples were annealed at temperatures of 300–550 °C in the ambient atmosphere for 60 min. Then, they were studied by X-ray diffraction, scanning microscopy, Fourier transform infrared spectroscopy, and low-temperature photoluminescence. Using these methods, we determined the main structural parameters of the films, such as texture, lattice parameters, CSR, and crystallite sizes, as well as the level of microstrains depending on the annealing temperature and time. In addition, the nature of recombination processes, optical quality and features of the energy structure of NiO nanocrystals were also studied. The obtained results show that NiO nanomaterials are promising for application in solar cells and flexible oxide electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Kamyshny, S. Magdassi, Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem. Soc. Rev. 48(6), 1712–1740 (2019). https://doi.org/10.1039/c8cs00738a

    Article  Google Scholar 

  2. A.H. Espera, J.R.C. Dizon, Q. Chen, R.C. Advincula, 3D-printing and advanced manufacturing for electronics. Prog. Addit. Manuf. 4(3), 245–267 (2019). https://doi.org/10.1007/s40964-019-00077-7

    Article  Google Scholar 

  3. H. Yang, W.R. Leow, X. Chen, 3D printing of flexible electronic devices. Small Methods 2(1), 1–7 (2018). https://doi.org/10.1002/smtd.201700259

    Article  Google Scholar 

  4. L. Nayak, S. Mohanty, S.K. Nayak, A. Ramadoss, A review on inkjet printing of nanoparticle inks for flexible electronics. J. Mater. Chem. C 7(29), 8771–8795 (2019). https://doi.org/10.1039/c9tc01630a

    Article  Google Scholar 

  5. T. Pandhi, A. Chandnani, H. Subbaraman, D. Estrada, A review of inkjet printed graphene and carbon nanotubes based gas sensors. Sensors 20(19), 1–20 (2020). https://doi.org/10.3390/s20195642

    Article  Google Scholar 

  6. F. Fayyazbakhsh, M.C. Leu, A brief review on 3D bioprinted skin substitutes. Procedia Manuf. 2020(48), 790–796 (2019). https://doi.org/10.1016/j.promfg.2020.05.115

    Article  Google Scholar 

  7. M. Zeng, Y. Zhang, Colloidal nanoparticle inks for printing functional devices: emerging trends and future prospects. J. Mater. Chem. A 7(41), 23301–23336 (2019). https://doi.org/10.1039/c9ta07552f

    Article  Google Scholar 

  8. Q. Huang, Y. Zhu, Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications. Adv. Mater. Technol. 4(5), 1–41 (2019). https://doi.org/10.1002/admt.201800546

    Article  Google Scholar 

  9. S. Danjumma, A. Yakubu, Nickel oxide (NiO) devices and applications: a review. Int. J. Eng. Res. 8(04), 461–467 (2019)

    Google Scholar 

  10. D. Klimm, Electronic materials with a wide band gap: recent developments. IUCrJ 1, 281–290 (2014). https://doi.org/10.1107/S2052252514017229

    Article  Google Scholar 

  11. G. Madhu, V. Biju, Effect of Ni2+ and O2- vacancies on the electrical and optical properties of nanostructured nickel oxide synthesized through a facile chemical route. Phys. E Low-Dimens. Syst. Nanostructures 60, 200–205 (2014). https://doi.org/10.1016/j.physe.2014.02.011

    Article  ADS  Google Scholar 

  12. T.P. Mokoena, H.C. Swart, D.E. Motaung, A review on recent progress of P-type nickel oxide based gas sensors: future perspectives. J. Alloys Compd. 805, 267–294 (2019). https://doi.org/10.1016/j.jallcom.2019.06.329

    Article  Google Scholar 

  13. F. Ma, Y. Zhao, J. Li, X. Zhang, H. Gu, J. You, Nickel oxide for inverted structure perovskite solar cells. J. Energy Chem. 52, 393–411 (2020). https://doi.org/10.1016/j.jechem.2020.04.027

    Article  Google Scholar 

  14. Z. Liu, A. Zhu, F. Cai, L.M. Tao, Y. Zhou, Z. Zhao, Q. Chen, Y.B. Cheng, H. Zhou, Nickel oxide nanoparticles for efficient hole transport in P-i-n and n-i-p perovskite solar cells. J. Mater. Chem. A 5(14), 6597–6605 (2017). https://doi.org/10.1039/c7ta01593c

    Article  Google Scholar 

  15. H.Y. Qu, D. Primetzhofer, M.A. Arvizu, Z. Qiu, U. Cindemir, C.G. Granqvist, G.A. Niklasson, Electrochemical rejuvenation of anodically coloring electrochromic nickel oxide thin films. ACS Appl. Mater. Interfaces 9(49), 42420–42424 (2017). https://doi.org/10.1021/acsami.7b13815

    Article  Google Scholar 

  16. M. Pinarbasi, S. Metin, H. Gill, M. Parker, B. Gurney, M. Carey, C. Tsang, Antiparallel pinned NiO spin valve sensor for GMR head application (Invited). J. Appl. Phys. 87(9), 5714–5719 (2000). https://doi.org/10.1063/1.372499

    Article  ADS  Google Scholar 

  17. A. Khalil, B.S. Lalia, R. Hashaikeh, Nickel oxide nanocrystals as a lithium-ion battery anode: structure-performance relationship. J. Mater. Sci. 51(14), 6624–6638 (2016). https://doi.org/10.1007/s10853-016-9946-z

    Article  ADS  Google Scholar 

  18. M. Bonomo, D. Dini, F. Decker, Electrochemical and photoelectrochemical properties of nickel oxide (NiO) with nanostructured morphology for photoconversion applications. Front. Chem. 6, 1–16 (2018). https://doi.org/10.3389/fchem.2018.00601

    Article  Google Scholar 

  19. J. Franc, Z. Bastl, Nickel evaporation in high vacuum and formation of nickel oxide nanoparticles on highly oriented pyrolytic graphite X-Ray photoelectron spectroscopy and atomic force microscopy study. Thin Solid Films 516(18), 6095–6103 (2008). https://doi.org/10.1016/j.tsf.2007.11.008

    Article  ADS  Google Scholar 

  20. T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J.A. Schwenzer, M. Hetterich, U. Lemmer, B.S. Richards, M. Powalla, U.W. Paetzold, Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics. Adv. Energy Mater. 9(12), 1–13 (2019). https://doi.org/10.1002/aenm.201802995

    Article  ADS  Google Scholar 

  21. A.M. Reddy, A.S. Reddy, K.S. Lee, P.S. Reddy, Growth and characterization of NiO thin films prepared by dc reactive magnetron sputtering. Solid State Sci. 13, 314–320 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.019

    Article  ADS  Google Scholar 

  22. J.D. Desai, Nickel oxide thin films by spray pyrolysis. J. Mater. Sci. Mater. Electron. 27(12), 12329–12334 (2016). https://doi.org/10.1007/s10854-016-5617-8

    Article  Google Scholar 

  23. A.C. Gandhi, J. Pant, S.D. Pandit, S.K. Dalimbkar, T.S. Chan, C.L. Cheng, Y.R. Ma, S.Y. Wu, Short-range magnon excitation in NiO nanoparticles. J. Phys. Chem. C 117(36), 18666–18674 (2013). https://doi.org/10.1021/jp4029479

    Article  Google Scholar 

  24. V.V. Kondalkar, P.B. Patil, R.M. Mane, P.S. Patil, S. Choudhury, P.N. Bhosal, Electrochromic performance of nickel oxide thin film: synthesis via electrodeposition technique. Macromol. Symp. 361(1), 47–50 (2016). https://doi.org/10.1002/masy.201400253

    Article  Google Scholar 

  25. P.M. Ponnusamy, S. Agilan, N. Muthukumarasamy, T.S. Senthil, G. Rajesh, M.R. Venkatraman, D. Velauthapillai, Structural, optical and magnetic properties of undoped NiO and Fe-doped NiO nanoparticles synthesized by wet-chemical process. Mater. Charact. 114, 166–171 (2016). https://doi.org/10.1016/j.matchar.2016.02.020

    Article  Google Scholar 

  26. M.M. Gomaa, M. Boshta, B.S. Farag, M.B.S. Osman, Structural and optical properties of nickel oxide thin films prepared by chemical bath deposition and by spray pyrolysis techniques. J. Mater. Sci. Mater. Electron. 27(1), 711–717 (2016). https://doi.org/10.1007/s10854-015-3807-4

    Article  Google Scholar 

  27. O. Dobrozhan, M. Baláž, S. Vorobiov, P. Baláž, A. Opanasyuk, Morphological, structural, optical properties and chemical composition of flexible Cu2ZnSnS4 thin films obtained by ink-jet printing of polyol-mediated nanocrystals. J. Alloys Compd. 842, 155883 (2020). https://doi.org/10.1016/j.jallcom.2020.155883

    Article  Google Scholar 

  28. O. Dobrozhan, S. Vorobiov, D. Kurbatov, M. Baláž, M. Kolesnyk, O. Diachenko, V. Komanicky, A. Opanasyuk, Structural properties and chemical composition of ZnO films deposited onto flexible substrates by spraying polyol mediated nanoinks. Superlattices Microstruct. (2020). https://doi.org/10.1016/j.spmi.2020.106455

    Article  Google Scholar 

  29. О Dobrozhan, І Shelest, А Stepanenko, D. Kurbatov, M. Yermakov, A. Čerškus, S. Plotnikov, А Opanasyuk, Structure, substructure and chemical composition of ZnO nanocrystals and films deposited onto flexible substrates. Mater. Sci. Semicond. Process. (2020). https://doi.org/10.1016/j.mssp.2019.104879

    Article  Google Scholar 

  30. O. Dobrozhan, O. Diachenko, M. Kolesnyk, A. Stepanenko, S. Vorobiov, P. Baláž, S. Plotnikov, A. Opanasyuk, Morphological, structural and optical properties of Mg-doped ZnO nanocrystals synthesized using polyol process. Mater. Sci. Semicond. Process. (2019). https://doi.org/10.1016/j.mssp.2019.104595

    Article  Google Scholar 

  31. O. Dobrozhan, A. Opanasyuk, M. Kolesnyk, M. Demydenko, H. Cheong, Substructural investigations, raman, and FTIR spectroscopies of nanocrystalline ZnO films deposited by pulsed spray pyrolysis. Phys. Status Solidi Appl. Mater. Sci. 212(12), 2915–2921 (2015). https://doi.org/10.1002/pssa.201532324

    Article  ADS  Google Scholar 

  32. O. Dobrozhan, D. Kurbatov, A. Opanasyuk, H. Cheong, A. Cabot, Influence of substrate temperature on the structural and optical properties of crystalline ZnO films obtained by pulsed spray pyrolysis. Surf. Interface Anal. 47(5), 601–606 (2015). https://doi.org/10.1002/sia.5752

    Article  Google Scholar 

  33. Selected power diffraction data for education and training (search manual and data cards) (Pennsylvania: International Center for Diffraction Data: 1998)

  34. P.V. Harris, Structural and other aspects of meat tenderness. J. Texture Stud. 7(1), 49–63 (1976). https://doi.org/10.1111/j.1745-4603.1976.tb01381.x

    Article  Google Scholar 

  35. V. Ramachandran, J. Beaudoin, in Handbook of Analytical Techniques in Concrete Science and Technology: Principles, Techniques and Applications, 1st edn, ed. by A. William (2001), pp. 1–964

  36. A. Messerschmidt, in X-Ray Crystallography of Biomacromolecules: A Practical Guide (Wiley-Blackwell, 2007), pp. 1–318

  37. A.S. Opanasyuk, D.I. Kurbatov, V.V. Kosyak, S.I. Kshniakina, S.N. Danilchenko, Characteristics of structure formation in zinc and cadmium chalcogenide films deposited on nonorienting substrates. Crystallogr. Reports 57(7), 927–933 (2012). https://doi.org/10.1134/S1063774512070206

    Article  ADS  Google Scholar 

  38. D. Kurbatov, A. Opanasyuk, S.M. Duvanov, A.G. Balogh, H. Khlyap, Growth kinetics and stoichiometry of ZnS films obtained by close-spaced vacuum sublimation technique. Solid State Sci. 13(5), 1068–1071 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.01.017

    Article  ADS  Google Scholar 

  39. O.A. Dobrozhan, V.B. Loboda, Y.V. Znamenshchykov, AS Cheong. Opanasyuk, H. , Structural and optical properties of Cu2ZnSnS4 films obtained by pulsed spray pyrolysis. J. Nano-Electron. Phys. 9(1), 1–7 (2017)

    Article  Google Scholar 

  40. K.S. Upadhyaya, G.K. Upadhyaya, A.N. Pandey, Unified study of lattice dynamics of NiO. J. Phys. Chem. Solids 63(1), 127–133 (2002). https://doi.org/10.1016/S0022-3697(01)00088-9

    Article  ADS  Google Scholar 

  41. D. Nam, A.S. Opanasyuk, P.V. Koval, A.G. Ponomarev, A.R. Jeong, G.Y. Kim, W. Jo, H. Cheong, Composition variations in Cu2ZnSnSe4 thin films analyzed by X-Ray diffraction, energy dispersive X-Ray spectroscopy, particle induced X-Ray emission, photoluminescence, and raman spectroscopy. Thin Solid Films 562, 109–113 (2014). https://doi.org/10.1016/j.tsf.2014.03.079

    Article  ADS  Google Scholar 

  42. H.L. Chang, T.C. Lu, H.C. Kuo, S.C. Wang, Effect of oxygen on characteristics of nickel oxideindium tin oxide heterojunction diodes. J. Appl. Phys. (2006). https://doi.org/10.1063/1.2404466

    Article  Google Scholar 

  43. P. Dubey, N. Kaurav, R.S. Devan, G.S. Okram, Y.K. Kuo, The effect of stoichiometry on the structural, thermal and electronic properties of thermally decomposed nickel oxide. RSC Adv. 8(11), 5882–5890 (2018). https://doi.org/10.1039/c8ra00157j

    Article  ADS  Google Scholar 

  44. N.N.M. Zorkipli, N.H.M. Kaus, A.A. Mohamad, Synthesis of NiO nanoparticles through Sol-Gel method. Procedia Chem. 19, 626–631 (2016). https://doi.org/10.1016/j.proche.2016.03.062

    Article  Google Scholar 

  45. A.W. Harris, A. Atkinson, Oxygen transport in growing nickel oxide scales at 600–800 °C. Oxid. Met. 34(3–4), 229–258 (1990). https://doi.org/10.1007/BF00665017

    Article  Google Scholar 

  46. J.S. Wolfi, O.B. Cavin, The effective thermal expansion of nickel and nickel oxide during high-temperature oxidation. Adv. X-ray Anal. 37, 449–456 (1993). https://doi.org/10.1154/s0376030800015974

    Article  Google Scholar 

  47. A. Makishima, J.D. Mackenzie, Calculation of thermal expansion coefficient of glasses. J. Non. Cryst. Solids 22(2), 305–313 (1976). https://doi.org/10.1016/0022-3093(76)90061-2

    Article  ADS  Google Scholar 

  48. N. Mironova-Ulmane, A. Kuzmin, I. Sildos, L. Puust, J. Grabis, Magnon and phonon excitations in nanosized NiO. Latv. J. Phys. Tech. Sci. 56, 61–72 (2019)

    Google Scholar 

  49. A.C. Gandhi, J. Pant, S.D. Pandit, S.K. Dalimbkar, T.S. Chan, C.L. Cheng, Y.R. Ma, S.Y. Wu, Short-range magnon excitation in NiO nanoparticles. J. Phys. Chem. C. 117, 18666–18674 (2013). https://doi.org/10.1021/jp4029479

    Article  Google Scholar 

  50. S. Visweswaran, R. Venkatachalapathy, M. Haris, R. Murugesan, Structural, morphological, optical and magnetic properties of sprayed NiO thin films by perfume atomizer. Appl. Phys. A Mater. Sci. Process. (2020). https://doi.org/10.1007/s00339-020-03709-w

    Article  Google Scholar 

  51. F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, C. Silva, Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C. 3, 10715–10722 (2015). https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  52. F.T. Thema, E. Manikandan, A. Gurib-Fakim, M. Maaza, Single phase Bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract. J. Alloys Compd. 657, 655–661 (2016). https://doi.org/10.1016/j.jallcom.2015.09.227

    Article  Google Scholar 

  53. R.L. Petritz, Theory of photoconductivity in semiconductor films. Phys. Rev. 104(6), 1508–1516 (1956). https://doi.org/10.1103/PhysRev.104.1508

    Article  ADS  Google Scholar 

  54. B. Yacobi, Semiconductor Materials: An Introduction to Basic Principles (Kluwer Academic/Plenum Publishers, New York, 2003)

    Google Scholar 

  55. J. Colinge, A. Colinge, Physics of Semiconductor Devices (Springer, New York, NY, 2007)

    Google Scholar 

  56. F. Hoffmann, Introduction to Crystallography (Springer, 2007)

    Google Scholar 

  57. L.S. Palatnik, Formation Mechanism and Substructure of Condensed (Nauka, Moscow, 1972)

    Google Scholar 

  58. K. Maniammal, G. Madhu, V. Biju, X-Ray diffraction line profile analysis of nanostructured nickel oxide: shape factor and convolution of crystallite size and microstrain contributions. Phys. E Low-Dimens. Syst. Nanostructures 85, 214–222 (2017). https://doi.org/10.1016/j.physe.2016.08.035

    Article  ADS  Google Scholar 

  59. L.A. Saghatforoush, M. Hasanzadeh, S. Sanati, R. Mehdizadeh, Ni(OH)2 and NiO nanostructures: synthesis, characterization and electrochemical performance. Bull. Korean Chem. Soc. 33(8), 2613–2618 (2012). https://doi.org/10.5012/bkcs.2012.33.8.2613

    Article  Google Scholar 

  60. M. Krunks, T. Dedova, I. Oja Açik, Spray pyrolysis deposition of zinc oxide nanostructured layers. Thin Solid Films 515(3), 1157–1160 (2006). https://doi.org/10.1016/j.tsf.2006.07.134

    Article  ADS  Google Scholar 

  61. K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, R. Ladchumananandasiivam, U.U. De Gomes, M. Maaza, Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon upconversion materials. Ceram. Int. 42(7), 8385–8394 (2016). https://doi.org/10.1016/j.ceramint.2016.02.054

    Article  Google Scholar 

  62. K. Kaviyarasu, D. Premanand, J. Kennedy, E. Manikandan, Synthesis of Mg doped TiO2 nanocrystals prepared by wet-chemical method: optical and microscopic studies. Int. J. Nanosci. 12(5), 1–6 (2013). https://doi.org/10.1142/S0219581X13500336

    Article  Google Scholar 

  63. H. Mohammad Shiri, M. Aghazadeh, Synthesis, characterization and electrochemical properties of capsule-like NiO nanoparticles. J. Electrochem. Soc. 159(6), E132–E138 (2012). https://doi.org/10.1149/2.106206jes

    Article  Google Scholar 

  64. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 5–8 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

    Article  Google Scholar 

  65. E. Engel, R.N. Schmid, Insulating ground states of transition-metal monoxides from exact exchange. Phys. Rev. Lett. 103(3), 1–4 (2009). https://doi.org/10.1103/PhysRevLett.103.036404

    Article  Google Scholar 

  66. S. Di Sabatino, J.A. Berger, L. Reining, P. Romaniello, Photoemission spectra from reduced density matrices: the band gap in strongly correlated systems. Phys. Rev. B 94(15), 1–8 (2016). https://doi.org/10.1103/PhysRevB.94.155141

    Article  Google Scholar 

  67. C.H. Ho, Y.M. Kuo, C.H. Chan, Y.R. Ma, Optical characterization of strong UV luminescence emitted from the excitonic edge of nickel oxide nanotowers. Sci. Rep. 5, 1–7 (2015). https://doi.org/10.1038/srep15856

    Article  Google Scholar 

  68. A.H. Hammad, M.S. Abdel-Wahab, S. Vattamkandathil, A.R. Ansari, Growth and correlation of the physical and structural properties of hexagonal nanocrystalline nickel oxide thin films with film thickness. Coatings 9(10), 1–11 (2019). https://doi.org/10.3390/coatings9100615

    Article  Google Scholar 

  69. J. Sajui, O.N. Balasundaram, Optimization and characterization of NiO thin films prepared via NSP technique and its P-N junction diode application. Mater. Sci. Poland. 37, 338–346 (2019). https://doi.org/10.2478/msp-2019-0049

    Article  ADS  Google Scholar 

  70. Y. Qi, H. Qi, C. Lu, Y. Yang, Y. Zhao, Photoluminescence and magnetic properties of β-Ni(OH)2 nanoplates and NiO nanostructures. J. Mater. Sci. Mater. Electron. 20(5), 479–483 (2009). https://doi.org/10.1007/s10854-008-9755-5

    Article  Google Scholar 

  71. A. Zunger, in Solid State Physics, ed. By F. Seitz, D. Turnbull, H. Ehrenreich (Academic Press, Orlando, 1986), pp. 275–464.

  72. C. Diao, C. Huang, C. Yang, C. Wu, Morphological, optical, and electrical properties of p-type nickel oxide thin films by nonvacuum deposition. Nanomaterials 10(4), 636–651 (2020). https://doi.org/10.3390/nano10040636

    Article  Google Scholar 

  73. I. Bersuker, The Jahn-Teller Effect (Cambridge University Press, 2009)

    Google Scholar 

  74. M.N. Sarychev, W.A.L. Hosseny, A.S. Bondarevskaya, I.V. Zhevstovskikh, A.V. Egranov, O.S. Grunskiy, V.T. Surikov, N.S. Averkiev, V.V. Gudkov, Adiabatic potential energy surface of the Jahn-Teller complexes in CaF2:Ni2+ crystal determined from experiment on ultrasonic attenuation. J. Alloys Compd. 848, 156167 (2020). https://doi.org/10.1016/j.jallcom.2020.156167

    Article  Google Scholar 

  75. M.N. Sarychev, I.V. Zhevstovskikh, N.S. Averkiev, I.B. Bersuker, V.V. Gudkov, V.T. Surikov, Determining the parameters of the Jahn-Teller effect in impurity centers from ultrasonic experiments: application to the ZnSe : Ni 2+ crystal. Phys. Solid State. 61, 180–186 (2019). https://doi.org/10.1134/S1063783419020240

    Article  ADS  Google Scholar 

  76. P.N. Bukivsky, Y.P. Gnatenko, A.K. Rozhko, I.A. Farina, IR-spectroscopy of crystals containing Jahn-Teller impurity centers. Infrared Phys. 29(2–4), 753–764 (1989). https://doi.org/10.1016/0020-0891(89)90121-8

    Article  ADS  Google Scholar 

  77. Yu.P. Gnatenko, AKh. Rozhko, Jahn-Teller effect for the 3A2-term. Infrared Phys. 25, 385–392 (1985). https://doi.org/10.1016/0020-0891(85)90112-5

    Article  ADS  Google Scholar 

  78. I.B. Bersuker, The Jahn-Teller and pseudo Jahn-Teller effect in materials science. J. Phys.: Conf. Ser. 883, 012001 (2017). https://doi.org/10.1088/1742-6596/833/1/012001

    Article  Google Scholar 

  79. R. Newman, R.M. Chrenko, Optical properties of nickel oxide. Phys. Rev. 114, 1507–1513 (1959). https://doi.org/10.1103/PhysRev.114.1507

    Article  ADS  Google Scholar 

  80. R. Glosser, W.C. Walker, Electroreflectance observation of localized and itinerate electrons states in NiO. Solid State Commun. 9, 1599–1602 (1971). https://doi.org/10.1016/0038-1098(71)90616-8

    Article  ADS  Google Scholar 

  81. J.L. Mc Natt, Electroreflectance study of NiO. Phys. Rev. Lett. 23, 915–918 (1969). https://doi.org/10.1103/PhysRevLett.23.915

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was performed under the financial support of the Ministry of Education and Science of Ukraine (0119U100398). The work is also supported by the National Research Foundation of Ukraine (project registration number: 2020.02/0313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kakherskyi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakherskyi, S., Pshenychnyi, R., Dobrozhan, O. et al. Structural, microstructural, chemical, and optical properties of NiO nanocrystals and films obtained by 3D printing. Appl. Phys. A 127, 715 (2021). https://doi.org/10.1007/s00339-021-04847-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04847-5

Keywords

Navigation