Skip to main content
Log in

Structural, chemical and magnetic features of gold nanoshapes integrated-Er2O3-doped tellurite glass system prepared by a conventional melt-quenching technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Rare earth ions-doped oxide glasses with improved traits are needed for sundry applications. Based on this fact, physiochemical and magnetic characteristics of Er3+ -doped lead–tellurite glasses embedded with gold nanoshapes (Au-NSPs) were customized via preparation and characterization. Glasses of composition 78.95TeO2–15PbO–5PbCl2–1Er2O3–0.05AuCl3 were made using conventional melt-quenching techniques at varying (1, 6, 16, and 24 h) heat treatment durations (HTDs) to optimize their morphology, structure, chemical, and magnetic properties. Structure analysis verified the amorphous nature of the as-quenched samples and the homogeneous distribution of Au-NSPs within a network matrix with an average diameter ranged from 1.32 to 7.12 nm. Significant chemical functional groups of the glasses were detected at 360 and 598 cm‒1, attributed to the number of non-bridging oxygen (NBO) in glass and the conversion of TeO4 tbp into TeO3 polyhedra through TeO3+1. The magnetic behavior of the glasses was due to the diffusion-limited growth of Au-NSPs as evidenced from the ESR and VSM results. Saturation magnetization and magnetic coercivity were in the range of 4.61 × 10–2 to 10.614 × 102 emu/g) and 1441.60 to 1992.20 Oe, respectively. The variations of g-factor, resonant magnetic field, and peak-to-peak line-width of the glasses were established to be promising for various functional applications especially for biomedical devices as antiviral screen protectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Erol-Taygun, K. Zheng, A.R. Boccaccini, Nanoscale bioactive glasses in medical applications. Int. J. Appl. Glas. Sci. 4(2), 136–148 (2013)

    Google Scholar 

  2. Z. Zhang, X. Liu, S. Feng, J. Tang, M. Shezad, The glass formation ability and soft magnetic properties of the Fe79Si9B4. 5P1. 5CuNbx nanocrystalline alloys. J. Magn. Magn. Mater. 497, 165990 (2020)

    Google Scholar 

  3. H. Fares, H. Elhouichet, B. Gelloz, M. Ferid, Silver nanoparticles enhanced luminescence properties of Er3+ doped tellurite glasses: effect of heat treatment. J. Appl. Phys. 116(12), 123504 (2014)

    ADS  Google Scholar 

  4. M. Karunanithy, G. Prabhavathi, A.H. Beevi, B.H. Ibraheem, K. Kaviyarasu, S. Nivetha, M. Jayachandran, Nanostructured metal tellurides and their heterostructures for thermoelectric applications- a Review. J. Nanosci. Nanotechnol. 18(10), 6680–6707 (2018)

    Google Scholar 

  5. G.L. Nealon, B. Donnio, R. Greget, J.P. Kappler, E. Terazzi, J.L. Gallani, Magnetism in gold nanoparticles. Nanoscale 4(17), 5244–5258 (2012)

    ADS  Google Scholar 

  6. N.N. Yusof, S.K. Ghoshal, M.N. Azlan, Optical properties of titania nanoparticles embedded Er3+-doped tellurite glass: judd-Ofelt analysis. J. Alloy. Compd. 724, 1083–1092 (2017)

    Google Scholar 

  7. A.A.A. Awshah, H.M. Kamari, C.K. Tim, N.M. Shah, S.H. Alazoumi, U.S. Aliyu, M. Noorazlan, Effect of neodymium nanoparticles on elastic properties of zinc-tellurite glass system. Adv. Mater. Sci. Eng. 2017, 1–7 (2017)

    Google Scholar 

  8. T. Xu, F. Chen, S. Dai, X. Shen, X. Wang, Q. Nie, J. Heo, Glass formation and third-order optical nonlinear properties within TeO2–Bi2O3–BaO pseudo-ternary system. J. Non-Cryst. Solids 357(11–13), 2219–2222 (2011)

    ADS  Google Scholar 

  9. N.M. Jan, M.R. Sahar, S. Sulhadi, R. El-Mallawany, Thermal, structural and magnetic properties of TeO2-MgO-Na2O-Nd2O3 glass system with NiO nanoparticles. J. Non-Cryst. Solids 522, 119566 (2019)

    Google Scholar 

  10. E.R. Barney, A.C. Hannon, D. Holland, N. Umesaki, M. Tatsumisago, R.G. Orman, S. Feller, Terminal oxygens in amorphous TeO2. J. Phys. Chem. Lett. 4(14), 2312–2316 (2013)

    Google Scholar 

  11. R.A. El-Mallawany, Tellurite Glasses Handbook: Physical Properties and Data (CRC Press, 2011)

    MATH  Google Scholar 

  12. L. Zhang, Y. Zhang, Fabrication and magnetic properties of Fe3O4 nanowire arrays in different diameters. J. Magn. Magn. Mater. 321, L15–L20 (2009)

    ADS  Google Scholar 

  13. L. Bolundut, L. Pop, M. Bosca, N. Tothazan, G. Borodi, E. Culea, R. Stefan, Structural, spectroscopic and magnetic properties of Nd3+ doped lead tellurite glass ceramics containing silver. J. Alloy. Compd. 692, 934–940 (2017)

    Google Scholar 

  14. S. Rada, A. Dehelean, E. Culea, FTIR and UV–VIS spectroscopy investigations on the structure of the europium–lead–tellurate glasses. J. Non-Cryst. Solids 357(16–17), 3070–3073 (2011)

    ADS  Google Scholar 

  15. Y. Ma, Z. Chen, Y. Chu, Y. Yang, Y. Liu, H. Li, L. Yang, Regulation of gold nanoparticles for the rare earth luminescence enhancement based on nanoporous silica glass. J. Lumin. 204, 104–109 (2018)

    Google Scholar 

  16. M. Agrachev, S. Antonello, T. Dainese, M. Ruzzi, A. Zoleo, E. Aprà, F. Maran, Magnetic ordering in gold nanoclusters. ACS Omega 2(6), 2607–2617 (2017)

    Google Scholar 

  17. H. Hori, T. Teranishi, Y. Nakae, Y. Seino, M. Miyake, S. Yamada, Anomalous magnetic polarization effect of Pd and Au nano-particles. Phys. Lett. A 263(4–6), 406–410 (1999)

    ADS  Google Scholar 

  18. E. Guerrero, M.A. Mũnoz-Márquez, M.A. García, P. Crespo, E. Fernández-Pinel, A. Hernando, A. Fernández, Surface plasmon resonance and magnetism of thiol-capped gold nanoparticles. Nanotechnology 19(17), 175701 (2008)

    ADS  Google Scholar 

  19. P.R. Sajanlal, T.S. Sreeprasad, A.K. Samal, T. Pradeep, Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Rev. 2(1), 5883 (2011)

    Google Scholar 

  20. T. Turba, M.G. Norton, I. Niraula, D.N. McIlroy, Ripening of nanowire-supported gold nanoparticles. J. Nanopart. Res. 11(8), 2137–2143 (2009)

    ADS  Google Scholar 

  21. M. Ghanbari, M. Salavati-Niasari, Tl4CdI6 nanostructures: facile sonochemical synthesis and photocatalytic activity for removal of organic dyes. Inorg. Chem. 57(18), 11443–11455 (2018)

    Google Scholar 

  22. M. Karami, M. Ghanbari, H.A. Alshamsi, S. Rashki, M. Salavati-Niasari, Facile fabrication of Tl 4 HgI 6 nanostructures as novel antibacterial and antibiofilm agents and photocatalysts in the degradation of organic pollutants. Inorg. Chem. Front. 8(10), 2442–2460 (2021)

    Google Scholar 

  23. M. Karami, M. Ghanbari, O. Amiri, M. Salavati-Niasari, Enhanced antibacterial activity and photocatalytic degradation of organic dyes under visible light using cesium lead iodide perovskite nanostructures prepared by hydrothermal method. Sep. Purif. Technol. 253, 117526 (2020)

    Google Scholar 

  24. M. Salavati-Niasari, F. Davar, Z. Fereshteh, Synthesis of nickel and nickel oxide nanoparticles via heat-treatment of simple octanoate precursor. J. Alloy. Compd. 494(1–2), 410–414 (2010)

    Google Scholar 

  25. M. Salavati-Niasari, Nanodimensional microreactor-encapsulation of 18-membered decaaza macrocycle copper (II) complexes. Chem. Lett. 34(2), 244–245 (2005)

    Google Scholar 

  26. F. Beshkar, H. Khojasteh, M. Salavati-Niasari, Recyclable magnetic superhydrophobic straw soot sponge for highly efficient oil/water separation. J. Colloid Interface Sci. 497, 57–65 (2017)

    ADS  Google Scholar 

  27. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Z. Zinatloo-Ajabshir, Nd2Zr2O7-Nd2O3 nanocomposites: new facile synthesis, characterization and investigation of photocatalytic behaviour. Mater. Lett. 180, 27–30 (2016)

    Google Scholar 

  28. A. Salehabadi, M. Salavati-Niasari, M. Ghiyasiyan-Arani, Self-assembly of hydrogen storage materials based multi-walled carbon nanotubes (MWCNTs) and Dy3Fe5O12 (DFO) nanoparticles. J. Alloy. Compd. 745, 789–797 (2018)

    Google Scholar 

  29. A. Almasbek, A. Kozlovskiy, M.V. Zdorovets, The effect of doping with gallium and indium oxides on the optical and shielding characteristics of 0.5 TeO2-(0.5–2x) MoO3-xGa2O3-xIn2O3 glasses. Opt. Mater. 118, 111271 (2021)

    Google Scholar 

  30. A. Temir, K. Zhumadilov, M. Zdorovets, A. Kozlovskiy, A. Trukhanov, Study of gamma radiation shielding efficiency with radiation-resistant Bi2O3-TeO2-WO3 ceramics. Solid State Sci. 115, 106604 (2021)

    Google Scholar 

  31. M.J. Aldhuhaibat, M.S. Amana, N.J. Jubier, A.A. Salim, Improved gamma radiation shielding traits of epoxy composites: Evaluation of mass attenuation coefficient, effective atomic and electron number. Radiat. Phys. Chem. 179, 109183 (2021)

    Google Scholar 

  32. A. Temir, K.S. Zhumadilov, M.V. Zdorovets, A. Kozlovskiy, A.V. Trukhanov, Study of the effect of doping CeO2 in TeO2–MoO–Bi2O3 ceramics on the phase composition, optical properties and shielding efficiency of gamma radiation. Opt. Mater. 115, 111037 (2021)

    Google Scholar 

  33. A.A. Salim, S.K. Ghoshal, I.M. Danmallam, E.S. Sazali, G. Krishnan, M.S. Aziz, H. Bakhtiar, Distinct optical response of colloidal gold-cinnamon nanocomposites: role of pH sensitization. J. Phys.: Conf. Series 1892, 012039 (2021)

    Google Scholar 

  34. S.A.M. Azmi, M.R. Sahar, Optical response and magnetic characteristic of samarium doped zinc phosphate glasses containing nickel nanoparticles. J. Magn. Magn. Mater. 393, 341–346 (2015)

    ADS  Google Scholar 

  35. K.V. Balueva, A.M. Kut’in, A.D. Plekhovich, S.E. Motorin, V.V. Dorofeev, Thermophysical characterization of TeO2-WO3-Bi2O3 glasses for optical applications. J. Non-Cryst. Solids 553, 120465 (2021)

    Google Scholar 

  36. S.I. Abbas, S.F. Hathot, A.S. Abbas, A.A. Salim, Influence of Cu doping on structure, morphology and optical characteristics of SnO2 thin films prepared by chemical bath deposition technique. Opt. Mater. 117, 111212 (2021)

    Google Scholar 

  37. Y. Shi, J.K. Huang, L. Jin, Y.T. Hsu, S.F. Yu, L.J. Li, H.Y. Yang, Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. Sci. Rep. 3(1), 1–7 (2013)

    Google Scholar 

  38. A.M. Goswami, S. Ghosh, Biological synthesis of colloidal gold nanoprisms using penicillium citrinum MTCC9999. J. Biomater. Nanobiotechnol. 4(2013), 20–27 (2013)

    Google Scholar 

  39. R.J. Amjad, M.R. Sahar, M.R. Dousti, S.K. Ghoshal, M.N.A. Jamaludin, Surface enhanced raman scattering and plasmon enhanced fluorescence in zinc-tellurite glass. Opt. Express 21(12), 14282–14290 (2013)

    ADS  Google Scholar 

  40. T. O’Neill, N. McNeese, A. Barron, B. Schelble, Human-autonomy teaming: a review and analysis of the empirical literature. Human Factors (2020). https://doi.org/10.1177/0018720820960865

    Article  Google Scholar 

  41. W. Ostwald, On the assumed isomerism of red and yellow mercury oxide and the surface-tension of solid bodies. Z. Phys. Chem 34, 495–503 (1900)

    Google Scholar 

  42. J.H. Yao, K.R. Elder, H. Guo, M. Grant, Theory and simulation of Ostwald ripening. Phys. Rev. B 47(21), 14110 (1993)

    ADS  Google Scholar 

  43. M.S. Kim, K.G. Yim, J.Y. Leem, S. Kim, G. Nam, D.Y. Lee, J.S. Kim, Effects of annealing temperature on the structural and the optical properties of ZnO thin films grown on porous silicon by using plasma-assisted molecular beam epitaxy. J. Korean Phys. Soc. 59(3), 2343–2348 (2011)

    ADS  Google Scholar 

  44. E.S. Sazali, M.R. Sahar, S.K. Ghoshal, R. Arifin, M.S. Rohani, A. Awang, Optical properties of gold nanoparticle embedded Er3+ doped lead–tellurite glasses. J. Alloy. Compd. 607, 85–90 (2014)

    Google Scholar 

  45. E.S. Sazali, M.R. Sahar, R. Arifin, S.K. Ghoshal, K. Hamzah, M.S. Rohani, enhanced optical properties of TeO2-PbO-PbCl2-Er2O3-AuCl3 glass. Dig. J. Nanomater. Biostruct. (DJNB) 11(3), 715–718 (2016)

    Google Scholar 

  46. T. Som, B. Karmakar, Nephelauxetic effect of low phonon antimony oxide glass in absorption and photoluminescence of rare-earth ions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 79(5), 1766–1782 (2011)

    ADS  Google Scholar 

  47. E.S. Sazali, M.R. Sahar, S.K. Ghoshal, R. Arifin, M.S. Rohani, R.J. Amjad, Efficient optical enhancement of Er3+ doped lead–tellurite glass embedded with gold nanoparticles: role of heat-treatment. J. Non-Cryst. Solids 410, 174–179 (2015)

    ADS  Google Scholar 

  48. Z.A.S. Mahraz, E.S. Sazali, M.R. Sahar, Spectral and dielectric characteristics of Er3+-doped multicomponent tellurite glasses. Optik 239, 166776 (2021)

    ADS  Google Scholar 

  49. W.B. Hillig, D. Turnbull, Theory of crystal growth in undercooled pure liquids. J. Chem. Phys. 24(4), 914–914 (1956)

    ADS  Google Scholar 

  50. Y. Orooji, M. Ghanbari, O. Amiri, M. Salavati-Niasari, Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable photo-catalytic performance through sunlight and antimicrobial activity. J. Hazard. Mater. 389, 122079 (2020)

    Google Scholar 

  51. A.A. Salim, S.K. Ghoshal, G. Krishnan, H. Bakhtiar, Tailored fluorescence traits of pulse laser ablated Gold-Cinnamon nanocomposites. Mater. Lett. 264, 127335 (2020)

    Google Scholar 

  52. B. Huang, Y. Zhou, P. Cheng, Z. Zhou, J. Li, G. Yang, The 1.85 μm spectroscopic properties of Er3+/Tm3+ co-doped tellurite glasses containing silver nanoparticles. J. Alloy. Compd. 686, 785–792 (2016)

    Google Scholar 

  53. I. Shaltout, Crystallization kinetics and structure of (TeO2-TiO2-Fe2O3) glasses. J. Mater. Sci. 35(2), 323–329 (2000)

    ADS  Google Scholar 

  54. H.A. Alluhaybi, S.K. Ghoshal, W.W. Shamsuri, B.O. Alsobhi, A.A. Salim, G. Krishnan, Pulsed laser ablation in liquid assisted growth of gold nanoparticles: evaluation of structural and optical features. Nano-Struct. Nano-Objects 19, 100355 (2019)

    Google Scholar 

  55. N.Y.M. Isa, E.S. Sazali, R. Hisam, S.K. Ghoshal, S.K.M. Zain, N.H. Juma’in, A. Awang, Physical, structural, and raman spectroscopic traits of neodymium-doped lead oxyfluoride zinc phosphate glass. J Phys: Conf Series 1892(1), 012027 (2021)

    Google Scholar 

  56. A. Ghosh, A. Pan, Scaling of the conductivity spectra in ionic glasses: dependence on the structure. Phys. Rev. Lett. 84(10), 2188 (2000)

    ADS  Google Scholar 

  57. L. Liang, N. Chen, Y. Jia, Q. Ma, J. Wang, Q. Yuan, W. Tan, Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging. Nano Res. 12(6), 1279–1292 (2019)

    Google Scholar 

  58. P. Liu, Z. Yao, J. Zhou, Z. Yang, L.B. Kong, Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 4(41), 9738–9749 (2016)

    Google Scholar 

  59. P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, L.B. Kong, Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Interfaces. 9(19), 16404–16416 (2017)

    Google Scholar 

  60. P. Liu, Z. Yao, V.M.H. Ng, J. Zhou, L.B. Kong, K. Yue, Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos. A Appl. Sci. Manuf. 115, 371–382 (2018)

    Google Scholar 

  61. M.A. Marzouk, S.M. Abo-Naf, Structure characterization and photoluminescence of sol-gel synthesized Ag-Dy-codoped silica phosphor. J. Non-Cryst. Solids 505, 292–300 (2019)

    ADS  Google Scholar 

  62. M.A. Willard, M.Q. Huang, D.E. Laughlin, M.E. McHenry, J.O. Cross, V.G. Harris, C. Franchetti, Magnetic properties of HITPERM (Fe, Co) 88 Zr 7 B 4 Cu 1 magnets. J. Appl. Phys. 85(8), 4421–4423 (1999)

    ADS  Google Scholar 

  63. X.L. Dong, Z.D. Zhang, S.R. Jin, B.K. Kim, Characterization and magnetic properties of Fe–Co ultrafine particles. J. Magn. Magn. Mater. 210(1–3), 143–149 (2000)

    ADS  Google Scholar 

  64. R.H. Kodama, A.E. Berkowitz, Atomic-scale magnetic modeling of oxide nanoparticles. Phys. Rev. B 59(9), 6321 (1999)

    ADS  Google Scholar 

  65. O. Bretcanu, S. Spriano, E. Verné, M. Cöisson, P.A.O.L.A. Tiberto, P. Allia, The influence of crystallised Fe3O4 on the magnetic properties of coprecipitation-derived ferrimagnetic glass–ceramics. Acta Biomater. 1(4), 421–429 (2005)

    Google Scholar 

  66. D. Caruntu, G. Caruntu, C.J. O’Connor, Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. J. Phys. D Appl. Phys. 40(19), 5801 (2007)

    ADS  Google Scholar 

  67. R.L. Comstock, Review modern magnetic materials in data storage. J. Mater. Sci.: Mater. Electron. 13(9), 509–523 (2002)

    Google Scholar 

  68. S. Ramesh, P. Venugopal, E. Mosquera, Experimental and theoretical investigation of Bixbyite (Mn0.8 Ni0.2)2 O3 nanoparticles for magnetic and electrochemical applications. J. Magn. Magn. Mater. 443, 45–50 (2017)

    ADS  Google Scholar 

  69. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials (Wiley, 2011)

    Google Scholar 

  70. R. Krzyminiewski, B. Dobosz, G. Schroeder, J. Kurczewska, ESR as a monitoring method of the interactions between TEMPO-functionalized magnetic nanoparticles and yeast cells. Sci. Rep. 9(1), 1–11 (2019)

    Google Scholar 

  71. S.M. Aziz, N.M. Yusoff, M.R. Sahar, S.N.S. Yaacob, Z.A.S. Mahraz, Effect of annealing on the optical and magnetic properties of Mn3O4 nanoparticles embedded into Eu3+ doped borotellurite glasses. J. Non-Cryst. Solids 515, 11–20 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

Authors are thankful for the financial support from 4B329 Nippon Sheet Glass, 01M39 IIIG, 18J93 UTM Encouragement Grant and MOHE FRGS Q.J130000.2509.21H11 is gratefully acknowledged. Authors are also grateful to Research Management Centre-Universiti Teknologi Malaysia (RMC-UTM) for supporting under Postdoctoral fellowship scheme

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Sazali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 307 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salim, A.A., Mahraz, Z.A.S., Anigrahawati, P. et al. Structural, chemical and magnetic features of gold nanoshapes integrated-Er2O3-doped tellurite glass system prepared by a conventional melt-quenching technique. Appl. Phys. A 127, 673 (2021). https://doi.org/10.1007/s00339-021-04841-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04841-x

Keywords

Navigation