Skip to main content
Log in

Structural, morphological and dielectric analyses of La1 − xSrxFeO3 solid solutions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Dielectric and conduction properties were investigated on La1 − xSrxFeO3 (0 ≤ x ≤ 0.5) ceramics synthesized by solid-state reaction method. X-ray powder diffraction pattern of all prepared samples and their Rietveld refinement revealed that all samples crystallize in orthorhombic structure with Pnma space group. Sr substitution induced the volume unit cell to decrease and the crystallite size to vary in a non-monotonic manner. Scanning electron microscopy images revealed also Sr-dependent morphology of the studied ceramics. Fourier transform infrared (FTIR) spectra evidenced structural distortion effects on νFe–O–Fe, σFe–O–Fe and νLa–O vibrations and showed the presence of the carbonate ion impurity for the compositions x = 0.2, 0.3, 0.4 and 0.5. Ac conductivity analysis was accomplished according to equation: \(\sigma_{ac} \left( \omega \right) = \frac{{\sigma_{s} }}{{1 + \tau^{2} \omega^{2} }} + \frac{{\sigma_{\infty } \tau^{2} \omega^{2} }}{{1 + \tau^{2} \omega^{2} }} + A \omega^{n}\) for the parent compound and its doped one La0.9Sr0.1FeO3. However, this analysis was realized by using Jonscher law: \(\sigma_{ac} \left( \omega \right) = \sigma_{dc} + A \omega^{n}\) for the compositions x = 0.2, 0.3, 0.4 and 0.5. It revealed that the hopping process occurred through long distance for 0 ≤ x ≤ 0.3 compositions, whereas for x = 0.4 and 0.5 compositions the hopping occurred between neighboring sites. Complex impedance analysis performed on these ceramics by means of different electrical equivalent circuits owing to their different morphologies allowed probing grain boundary effect on ac conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E.A. Nforna, J.N. Ghogomu, P.A. Joy, J.N. Lambi, Int. J. Eng. Res. Technol. 4(7), 907 (2015)

    Google Scholar 

  2. J.R. Mawdsley, T.R. Krause, Appl. Catal. A-Gen. 334(1–2), 311 (2008)

    Article  Google Scholar 

  3. G. Pecchi, P. Reyes, R. Zamora, L.E. Cadus, J.L.G. Fierro, J. Solid State Chem. 181(4), 905 (2008)

    Article  ADS  Google Scholar 

  4. A. Delmastro, D. Mazza, S. Ronchetti, M. Vallino, R. Spinicci, P. Brovetto, M. Salis, Mater. Sci. Eng. B. 79, 140 (2001)

    Article  Google Scholar 

  5. N.N. Toan, S. Saukko, V. Lantto, Phys. B 327, 279 (2003)

    Article  ADS  Google Scholar 

  6. V. Lantto, S. Saukko, N.N. Toan, L.L. Reyes, C.G. Granqvist, J. Electroceram. 13, 721 (2004)

    Article  Google Scholar 

  7. G. Martinelli, M. Carotta, M. Ferroni, Y. Sadaoka, E. Traversa, Sensor. Actuat. B-Chem. 55, 99 (1999)

    Article  Google Scholar 

  8. T. Inoue, N. Seki, K. Eguchi, H. Arai, J. Electrochem. Soc. 137, 2523 (1990)

    Article  ADS  Google Scholar 

  9. C.B. Alcock, R.C. Doshi, Y. Shea, Solid State Ionics 51, 281 (1992)

    Article  Google Scholar 

  10. J. Zhao, Y. Liu, X. Li, G. Lu, L. You, X. Liang, F. Liu, T. Zhang, Y. Du, Sens. Actuat. B Chem. 18, 802 (2013)

    Article  Google Scholar 

  11. N.Q. Minh, J. Am. Ceram. Soc. 76, 536 (1993)

    Article  Google Scholar 

  12. R.B. da Silva, J.M. Soares, J.A.P. da Costa, J.H. de Araújo, A.R. Rodrigues, F.L.A. Machado, J. Magn. Magn. Mater. 466, 306 (2018)

    Article  ADS  Google Scholar 

  13. F. He, X. Li, K. Zhao, Z. Huang, G. Wei, H. Li, Fuel 108, 465 (2013)

    Article  Google Scholar 

  14. C.A. Kafa, D. Triyonoa, H. Laysandra, AIP Conf. Proc. 1862, 030042 (2017)

    Article  Google Scholar 

  15. M. Medarde, J. Mesot, S. Rosenkranz, P. Lacorre, W. Marshall, S. Klotz, J.S. Loveday, G. Hamel, S. Hull, P. Radaelli, Phys. B 15, 234–236 (1997)

    Google Scholar 

  16. S.K. Park, T. Ishikawa, Y. Tokura, Y.Q. Li, Y. Matsui, Phys. Rev. B 60, 6010788 (1999)

    ADS  Google Scholar 

  17. K. Vidal, L.M. Rodriguez-Martinez, L. Ortega-San-Martín, M.L. Nó, T. Rojo, M.I. Arriortua, Workshop on solid oxide fuel cells: materials and technology. Albacete 11(1), 51 (2011)

    Google Scholar 

  18. S. Thirumalairajan, K. Girija, Valmor R. Mastelaro, N. Ponpandian, J. Mater. Sci.: Mater. Electron. (2015). https://doi.org/10.1007/s10854-015-3540-z

  19. D. Triyono, C.A. Kafa, H. Laysandra, J. Adv. Ecs. 8(5), 1850036–1 (2018)

    Google Scholar 

  20. Z. Kaiwen, W. Xuehang, W. Wenwei, X. Jun, T. Siqi, L. Sen, Adv. Powder. Technol. 24, 359 (2013)

    Article  Google Scholar 

  21. X. Chu, S. Zhou, W. Zhang, H. Shui, Mater. Sci. Eng. B 164, 65 (2009)

    Article  Google Scholar 

  22. M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Acta. Mater. 59, 1338 (2011)

    Article  ADS  Google Scholar 

  23. S.A. Ivanov, R. Tellgren, F. Porcher, T. Ericsson, A. Mosunov, P. Beran, S.K. Korchagina, P.A. Kumar, R. Mathieu, P. Nordblad, Mater. Res. Bull. 47, 3253 (2012)

    Article  Google Scholar 

  24. A. Ecija, K. Vidal, A. Larrañaga, L. Ortega-San-Martín and M. I. Arriortua, Synthetic methods for perovskite materials-structure and morphology, in Advances in Crystallization Processes (InTech Europe, 2012), p. 485

  25. H.M. Rietveld, J. Appl. Cryst. 2, 65 (1969)

    Article  Google Scholar 

  26. J. Rodriguez Carvajal, Phys. B 192, 55 (1993)

    Article  ADS  Google Scholar 

  27. A.M. Ritzmann, A.B. Munoz-García, M. Pavone, J.A. Keith, E.A. Carter, Chem. Mater., 252013, 25, 3011–3019. https://doi.org/10.1021/cm401052w

  28. Defne Bayraktar, La0.5Sr0.5Fe1 − yMyO3 − δ (M = Ti, Ta) perovskite oxides for oxygen separation membranes, sciences doctorat, Federal Polytechnique School of Lausanne (2008)

  29. S.A. Ivanov, R. Tellgren, F. Porcher, T. Ericsson, A. Mosunov, P. Beran, S.K. Korchagina, P. AnilKumar, R. Mathieu, P. Nordblad, Mater. Res. Bull. 47, 3253 (2012)

    Article  Google Scholar 

  30. Y.M. Abbas, A.B. Mansour, S.E. Ali, A.H. Ibrahim, J. Adv. Phys. 14(3), 2347 (2018)

    Article  Google Scholar 

  31. V.F. Savchenko, L.S. Ivashkevich, V.N. Meleshko, Inorg. Mater. 22(7), 991 (1986)

    Google Scholar 

  32. H. Wu, Z. Xia, X. Zhang, S. Huang, M. Wei, F. Yang, Y. Song, G. Xiao, Z. Ouyang, Z. Wang, Ceram. Int. 44(1), 146 (2018)

    Article  Google Scholar 

  33. R.D. Shannon, Acta Cryst. A32, 751 (1976)

    Article  Google Scholar 

  34. K. Zhao, F. He, Z. Huang, A. Zheng, H. Li, Z. Zhao, Chin. J. Catal. 35, 1196 (2014)

    Article  Google Scholar 

  35. V.M. Goldschmit, Geochem. Verteil. Elem. 7, 8 (1927)

    Google Scholar 

  36. J.M.D. Coey, M. Viret, S. Von Molnar, Adv. Phys. 48, 167 (1999)

    Article  ADS  Google Scholar 

  37. J. Cibert, J.-F. Bobo, U. Lüders, C. R. Phys. 6, 977 (2005)

    Article  ADS  Google Scholar 

  38. S. Hcini, S. Zemni, A. Triki, H. Rahmouni, M. Boudard, J. Alloys Compd. 509, 1394 (2011)

    Article  Google Scholar 

  39. S. Khadhraoui, A. Triki, S. Hcini, S. Zemni, M. Oumezzine, J. Alloys. Compd. 574, 290 (2013)

    Article  Google Scholar 

  40. Y.C. Liou, Ceram. Int. 30(5), 667 (2004)

    Article  Google Scholar 

  41. Y.C. Liou, Mat. Sci. Eng. B-Solid 108(3), 278 (2004)

    Article  Google Scholar 

  42. V.V. Kharton, A.L. Shaulo, A.P. Viskup, M. Avdeev, A.A. Yaremchenko, M.V. Patrakeev, A.I. Kurbakov, E.N. Naumovich, F.M.B. Marques, Solid State Ionics 150(3–4), 229 (2002)

    Article  Google Scholar 

  43. F. Yang, X.X. Yang, Q. Lin, R.J. Wang, H. Yang, Y. He, Mater. Sci. (Medziagotyra) (2019). https://doi.org/10.5755/j01.ms.25.3.19455

  44. M.A. Gabal, F. Al-Solami, Y.M. Al-Angari, A. Awad, A.A. Al-Juaid, A. Saeed, J. Mater. Sci.-Mater. El. 31, 3146 (2020)

    Article  Google Scholar 

  45. B.V. Prasad, B.V. Rao, K. Narsaiah, G.N. Rao, J.W. Chen, D.S. Babu, I.O.P. Conf, IOP Conf. Series: Mater. Sci. Eng. 73, 012129 (2015)

    Article  Google Scholar 

  46. J. Coates, Interpretation of infrared spectra, a practical approach, in Encyclopedia of Analytical Chemistry (Wiley, Chichester, 2000), p. 10815

  47. M.A. Ahmed, R. Seoudi, S.I.J. El-dek, Mol. Struct. 754, 41 (2005)

    Article  ADS  Google Scholar 

  48. E. Tuncer, Y.V. Serdyuk, S.M. Gubanski, IEEE Trans. Dielectr. Electr. Insul. 9(5), 809 (2002)

    Article  Google Scholar 

  49. S. Ke, P. Lin, H. Huang, H. Fan, and X. Zeng, J. Ceram., 795827, (2013)

  50. A. Kyritsis, P. Pissis, J. Grammatikakis, J. Polym. Sci. Polym. Phys. 33, 1737 (1995)

    Article  ADS  Google Scholar 

  51. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  52. L.L. Hench, J.K. West, Principles of Electronic Ceramics, 3rd edn. (Wiley, New York, 1990), p. 189

    Google Scholar 

  53. K. Iwasaki, T. Ito, M. Yoshino, T. Matsui, T. Nagasaki, Y. Arita, J. Alloy. Comp. 430, 297 (2007)

    Article  Google Scholar 

  54. W. Howard, J.R. Starkweather, P.J. Avakian, Polym. Sci. Part B Polym. Phys. 30, 637 (1992)

    Article  ADS  Google Scholar 

  55. G.M. Tsangaris, G.C. Psarras, N.J. Kouloubi, Mater. Sci. 33, 2027 (1998)

    Article  ADS  Google Scholar 

  56. J. Lui, C. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70, 144106 (2004)

    Article  ADS  Google Scholar 

  57. S. Erat, A. Braun, C. Piamonteze, Z. Liu, A. Ovalle, H. Schindler, T. Graule, L.J. Gauckler, J. Appl. Phys. 108, 124906 (2010)

    Article  ADS  Google Scholar 

  58. L. Mogni, F. Prado, H. Ascolani, M. Abbate, M.S. Moreno, A. Manthiram, A. Canerio, J. Solid State Chem. 178, 1559 (2005)

    Article  ADS  Google Scholar 

  59. M. Sassi, A. Oueslati, M. Gargouri, Appl. Phys. A 119(2015), 763 (2015)

    Article  ADS  Google Scholar 

  60. A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectics Press, London, 1996)

    Google Scholar 

  61. A.M. Abo El Ata, M.K. El Nimra, S.M. Attia, D. El Kony, A.H. Al-Hammadi, J. Magn. Magn. Mater. 297, 33 (2006)

    Article  ADS  Google Scholar 

  62. A. Rahal, S. Megdiche Borchani, K. Guidara, M. Megdiche, J. Alloy. Comp. 735, 1885 (2018)

    Article  Google Scholar 

  63. C. Tian, S.W. Chan, Solid State Ion. 134, 89 (2000)

    Article  Google Scholar 

  64. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  Google Scholar 

  65. E. Barsoukov, J. Ross Macdonald, Impedance Spectroscopy Theory, Experiment and Applications, 2nd edn. (Wiley Interscience, New York, 2005), p. 14

  66. U. Intatha, S. Eitssayeam, J. Wang, T. Tunkasiri, Curr. Appl. Phys. 10, 21 (2010)

    Article  ADS  Google Scholar 

  67. P. Zeng, K. Wang, R.L. Falkenstein-Smith, J. Ahn, Braz. J. Chem. Eng. 32(3), 757 (2015)

    Article  Google Scholar 

  68. G. Gregori, B. Rahmati, W. Sigle, P. Aken, J. Maier, Solid State Ionics 192, 65 (2011)

    Article  Google Scholar 

  69. J. Frenkel, Kinetic Theory of Liquids (Oxford University Press, New York, 1946)

    MATH  Google Scholar 

  70. S. Khadhraoui, A. Triki, S. Hcini, S. Zemni, M. Oumezzine, J. Magn. Magn. Mater. 371, 69 (2014)

    Article  ADS  Google Scholar 

  71. C. Tian, S.-W. Chan, J. Am. Ceram. Soc. 85(9), 2222 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to Dr. Michel Boudard (CNRS Researcher at LMGP, Univ. Grenoble Alpes, Grenoble, France) for his keen interest, fruitful discussions and kind help throughout the structural part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Triki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lataoui, R., Triki, A., Hcini, S. et al. Structural, morphological and dielectric analyses of La1 − xSrxFeO3 solid solutions. Appl. Phys. A 127, 721 (2021). https://doi.org/10.1007/s00339-021-04825-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04825-x

Keywords

Navigation