Skip to main content

Advertisement

Log in

Laser ablation of graphite with near infrared microsecond pulses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser processing of polycrystalline porous graphite through micro- to millisecond pulses with 1 µm wavelength is investigated. The study aims at finding the best compromise between the efficiency of the process (ablation rate) and the quality (reduced heat-affected zone) for drilling and cutting applications. Our experimental approach is based on experiments involving a monomode kW ytterbium fibre laser (1080 nm) coupled with a laser scanning system. This system is used for parametric studies on pulse duration, power, repetition rate and scanning speed on samples that are analysed with scanning electron microscopy. To improve the understanding of the underlying physical phenomena and processes involved, a finite element numerical model is developed, taking into account energy deposition through optical ray tracing, heat transfer, sublimation of the material and crater formation. Based on these experimental and numerical tools, we identify some optimum parameters to fabricate high aspect ratio shapes in graphite samples of 1.5 mm thickness with excellent edge quality and minimal heat-affected zone. Laser processing under vacuum atmosphere is also studied and exhibit no difference in behaviour compared to ambient atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.D. Shirk, P.A. Molian, A review of ultrashort pulsed laser ablation of materials. J. Laser Appl. 10, 18 (1998). https://doi.org/10.2351/1.521827

    Article  ADS  Google Scholar 

  2. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109 (1997). https://doi.org/10.1007/BF01567637

    Article  ADS  Google Scholar 

  3. A.K. Dubey, V. Yadava, Laser beam machining—A review. Int. J. Mach. Tools Manuf. 48, 609 (2008). https://doi.org/10.1016/j.ijmachtools.2007.10.017

    Article  Google Scholar 

  4. S. Preuss, A. Demchuk, M. Stuke, Sub-picosecond UV laser ablation of metals. Appl. Phys. A 61, 33 (1995). https://doi.org/10.1007/BF01538207

    Article  ADS  Google Scholar 

  5. P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du, G. Mourou, Machining of sub-micron holes using a femtosecond laser at 800 nm. Opt. Commun. 114, 106 (1995). https://doi.org/10.1016/0030-4018(94)00585-I

    Article  ADS  Google Scholar 

  6. S. Küper, M. Stuke, Ablation of polytetrafluoroethylene (Teflon) with femtosecond UV excimer laser pulses. Appl. Phys. Lett. 54, 4 (1989). https://doi.org/10.1063/1.100831

    Article  ADS  Google Scholar 

  7. J. Ihlemann, B. Wolff, P. Simon, Nanosecond and femtosecond excimer laser ablation of fused silica. Appl. Phys. A 45, 363 (1992). https://doi.org/10.1007/BF00324203

    Article  ADS  Google Scholar 

  8. J. Ihlemann, A. Scholl, H. Schmidt, B. Woltf-Rottke, Nanosecond and femtosecond excimer-laser ablation of oxide ceramics. Appl. Phys. A 60, 411 (1995). https://doi.org/10.1007/BF01538343

    Article  ADS  Google Scholar 

  9. M.N.R. Ashfold, F. Claeyssens, G.M. Fuge, S.J. Henley, Pulsed laser ablation and deposition of thin films. Chem Soc Rev 33, 23 (2004). https://doi.org/10.1039/B207644F

    Article  Google Scholar 

  10. D.H. Lowndes, D.B. Geohegam, A.A. Puretzky, D.P. Norton, C.M. Rouleau, Synthesis of novel thin-film materials by pulsed laser deposition. Science 273, 898–903 (1996). https://doi.org/10.1126/science.273.5277.898

    Article  ADS  Google Scholar 

  11. P.R. Willmott, J.R. Huber, Pulsed laser vaporization and deposition. Rev. Mod. Phys. 72, 315 (2000). https://doi.org/10.1103/RevModPhys.72.315

    Article  ADS  Google Scholar 

  12. M. Malinauskas, M. Farsari, A. Piskarskas, S. Juodkazis, Ultrafast laser nanostructuring of photopolymers: a decade of advances. Phys. Rep. 533, 1 (2013). https://doi.org/10.1016/j.physrep.2013.07.005

    Article  ADS  Google Scholar 

  13. K.C. Phillips, H.H. Gandhi, E. Mazur, S.K. Sundaram, Ultrafast laser processing of materials: a review. Adv. Opt. Photonics 7, 684 (2015). https://doi.org/10.1364/AOP.7.000684

    Article  ADS  Google Scholar 

  14. V. Oliveira, S. Ausset, R. Vilar, Surface micro/nanostructuring of titanium under stationary and non-stationary femtosecond laser irradiation. Appl. Surf. Sci. 255, 7556–7560 (2009). https://doi.org/10.1016/j.apsusc.2009.04.027

    Article  ADS  Google Scholar 

  15. T.H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Microstructuring of silicon with femtosecond laser pulses. Appl. Phys. Lett. 73, 1673 (1998). https://doi.org/10.1063/1.122241

    Article  ADS  Google Scholar 

  16. F. Xiong, Y.Y. Wang, R.P.H. Chang, Complex dielectric function of amorphous diamond films deposited by pulsed-excimer-laser ablation of graphite. Phys. Rev. B 48, 8016 (1993). https://doi.org/10.1103/physrevb.48.8016

    Article  ADS  Google Scholar 

  17. Á. Mechler, P. Heszler, Z. Kántor, T. Szörényi, Z. Bor, Excimer laser irradiation induced formation of diamond-like carbon layer on graphite. Appl. Surf. Sci. 138, 174 (1999). https://doi.org/10.1016/S0169-4332(98)00397-3

    Article  ADS  Google Scholar 

  18. H. Togashi, K. Aoki, M. Mukaida, T. Kameyama, Formation of large carbon cluster ions at graphite (HOPG) surfaces by laser irradiation. Appl. Surf. Sci. 96, 276 (1996). https://doi.org/10.1016/0169-4332(95)00431-9

    Article  ADS  Google Scholar 

  19. P. Patsalas, S. Kaziannis, C. Kosmidis, D. Papadimitriou, Optimized pulsed laser deposition by wavelength and static electric field control: The case of tetrahedral amorphous carbon films. J Appl Phys 101, 124903 (2007). https://doi.org/10.1063/1.2745445

    Article  ADS  Google Scholar 

  20. C.B. Collins, F. Davanloo, E.M. Juengermañ, D.R. Jander, T.J. Lee, Preparation and study of laser plasma diamond. Surf. Coat. Technol. 47, 244 (1991). https://doi.org/10.1016/0257-8972(91)90287-7

    Article  Google Scholar 

  21. S.E. Johnson, M.N.R. Ashfold, M.P. Knapper, R.J. Lade, K.N. Rosser, N.A. Fox, W.N. Wang, Production and characterisation of amorphic diamond films produced by pulsed laser ablation of graphite. Diam. Relat. Mater. 6, 569 (1997). https://doi.org/10.1016/S0925-9635(96)00660-7

    Article  ADS  Google Scholar 

  22. J. J. Cuomo, D. L., Pappas, J., Bruley, J. P., Doyle, K. L. Saenger, Vapor deposition processes for amorphous carbon films with sp3 fractions approaching diamond. J. Appl. Phys. 70, 1706 (1991). https://doi.org/10.1063/1.349540

  23. C. Bower, S. Suzuki, K. Tanigaki, O. Zhou, Synthesis and structure of pristine and alkali-metal-intercalated single-walled carbon nanotubes. Appl. Phys. A 67, 47 (1998). https://doi.org/10.1007/s003390050736

    Article  ADS  Google Scholar 

  24. R. Rozman, I. Grabec, E. Govekar, Influence of absorption mechanisms on laser-induced plasma plume. Appl. Surf. Sci. 254, 3295 (2008). https://doi.org/10.1016/j.apsusc.2007.11.029

    Article  ADS  Google Scholar 

  25. L.D. Thomas, R.K. Nesbet, Low-energy electron scattering by atomic carbon. Phys. Rev. A 12, 2378 (1975). https://doi.org/10.1103/PhysRevA.12.2378

    Article  ADS  Google Scholar 

  26. H., Munjal, K. L., Baluja, Elastic and excitation processes of electron impact on C3 using the R-matrix method. J. Phys. B: At. Mol. Opt. Phys. 39, 3185 (2006). https://doi.org/10.1088/0953-4075/39/16/004

  27. Halmova, G., Gorfinkiel, J. D., Tennyson, J., Low-energy electron collisions with C2 using the R-matrix method. J. Phys. B: At. Mol. Opt. Phys. 39, 2849 (2006). https://doi.org/10.1088/0953-4075/39/12/018

  28. J. Hoffman, T. Moscicki, Z. Szymanski, Acceleration and distribution of laser-ablated carbon ions near the target surface. J. Phys. D: Appl Phys 45, 025201 (2012). https://doi.org/10.1088/0022-3727/45/2/025201

    Article  ADS  Google Scholar 

  29. M.D. Shirk, P.A. Molian, Ultra-short pulsed laser ablation of highly oriented pyrolytic graphite. Carbon 39, 1183 (2001). https://doi.org/10.1016/S0008-6223(00)00236-0

    Article  Google Scholar 

  30. J. Hoffman, J. Chrzanowska, S. Kucharski, T. Moscicki, I.N. Mihailescu, C. Ristoscu, Z. Szymanski, The effect of laser wavelength on the ablation rate of carbon. Appl. Phys. A 117, 395 (2014)

    Article  ADS  Google Scholar 

  31. D. Lee, R. Patwa, H. Herfurth, J. Mazumder, High speed remote laser cutting of electrodes for lithium-ion batteries: Anode. J. Power Sources 240, 368 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.096

    Article  Google Scholar 

  32. A. H. A., Lutey, A., Fortunato, A., Ascari, S., Carmignato, L., Orazi, Pulsed Laser Ablation of Lithium Ion Battery Electrodes. Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. Volume 2: Processing (2014). https://doi.org/10.1115/MSEC2014-3967

  33. B., Schmieder, Laser cutting of graphite anodes for automotive lithium-ion secondary batteries: investigations in the edge geometry and heat affected zone. Proceedings Volume 8244, Laser-based Micro- and Nanopackaging and Assembly VI; 82440R (2012). https://doi.org/10.1117/12.912767

  34. M. Luetke, V. Franke, A. Techel, T. Himmer, U. Klotzbach, A. Wetzig, E. Beyerab, A Comparative Study on Cutting Electrodes for Batteries with Lasers. Phys. Procedia 12, 286–291 (2011). https://doi.org/10.1016/j.phpro.2011.03.135

    Article  ADS  Google Scholar 

  35. R., Patwa, H., Herfurth, S., Heinemann, J., Mazumder, D., Lee, Investigation of different laser cutting strategies for sizing of Li-ion battery electrodes. ICALEO 2012, 908 (2012). https://doi.org/10.2351/1.5062562

  36. J.B. Habedank, J. Endres, P. Schmitz, M.F. Zaeh, H.P. Huber, Femtosecond laser structuring of graphite anodes for improved lithium-ion batteries: Ablation characteristics and process design. J. Laser Appl. 30, 032205 (2018). https://doi.org/10.2351/1.5040611

    Article  ADS  Google Scholar 

  37. S.V. Garnov, V.I. Konov, T. Kononenko, V.P. Pashinin, M.N. Sinyavsky, Microsecond Laser Material Processing at1.06 μm. Laser Physics 14, 910–915 (2004)

    Google Scholar 

  38. L. Gallais, T. Vidal, E. Lescoute, Y. Pontillon, J.-L. Rullier, High power continuous wave laser heating of graphite in a high temperature range up to 3800 K. J. Appl. Phys. 129, 043102 (2021). https://doi.org/10.1063/5.0033530

    Article  ADS  Google Scholar 

  39. L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, J.-L. Rullier, Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO2 laser irradiation. J. Appl. Phys. 111, 063106 (2012)

    Article  ADS  Google Scholar 

  40. W.-I. Cho, S.J. Naa, C. Thomy, F. Vollertsen, Numerical simulation of molten pool dynamics in high power disk laser welding. J. Mater. Process. Technol. 212, 262 (2012). https://doi.org/10.1016/j.jmatprotec.2011.09.011

    Article  Google Scholar 

  41. J.-H. Cho, S.-J. Na, Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole. J. Phys. D: Appl. Phys. 39, 5372 (2006). https://doi.org/10.1088/0022-3727/39/24/039

    Article  ADS  Google Scholar 

  42. H. Ki, J. Mazumder, P.S. Mohanty, Modeling of laser keyhole welding: Part I. mathematical modeling, numerical methodology, role of recoil pressure, multiple reflections, and free surface evolution. Metall. Mater. Trans. A. 33, 1817–1830 (2002). https://doi.org/10.1007/s11661-002-0190-6

    Article  Google Scholar 

  43. J.Y. Lee, S.H. Ko, D.F. Farson, C.D. Yoo, Mechanism of keyhole formation and stability in stationary laser welding. J. Phys. D: Appl. Phys. 35, 1570 (2002). https://doi.org/10.1088/0022-3727/35/13/320

    Article  ADS  Google Scholar 

  44. A. Otto, H. Koch, K.-H. Leitz, M. Schmidt, Numerical Simulations - A Versatile Approach for Better Understanding Dynamics in Laser Material Processing. Phys. Procedia 12, 11 (2011). https://doi.org/10.1016/j.phpro.2011.03.003

    Article  ADS  Google Scholar 

  45. P.V. Petkov, S.S. Dimov, R.M. Minev, D.T. Pham, Laser milling: Pulse duration effects on surface integrity. Proc. Inst. Mech. Eng. B 222, 35–45 (2008). https://doi.org/10.1243/09544054JEM840

    Article  Google Scholar 

  46. S. Sinha, Nanosecond laser ablation of graphite: A thermal model based simulation. J. Laser Appl. 30, 012008 (2018). https://doi.org/10.2351/1.5021520

    Article  ADS  Google Scholar 

  47. J. Tu, A.G. Paleocrassas, N. Reeves, N. Rajule, Experimental characterization of a micro-hole drilling process with short micro-second pulses by a CW single-mode fiber laser. Opt. Lasers Eng. 55, 275–283 (2014). https://doi.org/10.1016/j.optlaseng.2013.11.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Doualle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doualle, T., Reymond, M., Pontillon, Y. et al. Laser ablation of graphite with near infrared microsecond pulses. Appl. Phys. A 127, 722 (2021). https://doi.org/10.1007/s00339-021-04815-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04815-z

Keywords

Navigation