Skip to main content

Superconductive hydrogen-rich compounds under high pressure

Abstract

In recent decades, hydrogen-rich compounds are promising candidates for room-temperature superconductors under extremely high pressure. Remarkably, the theory-oriented finding of covalent hydride H3S and a class of clathrate hydrides, such as YH9 and LaH10, with high superconducting critical temperature (Tc) above 240 K, which give rise to the hope of searching for room-temperature superconductivity among hydrogen-rich compounds under high pressure. In this paper, we focus on the research progress of binary and ternary hydrides, provide the introduction of conventional phonon-mediated superconductivity theory and the physical mechanism of high-temperature superconductivity briefly, and offer an outlook on the challenge of discovering room-temperature superconductors among hydrogen-rich compounds in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. H.K. Onnes, The Resistance of Pure Mercury at Helium Temperatures (Springer, Dordrecht, 1911)

    Google Scholar 

  2. Y. Tokura, H. Takagi, S. Uchida, Nature 337, 345–347 (1989)

    ADS  Google Scholar 

  3. W.M. Lia, J.F. Zhao, L.P. Cao, Z. Hud, Q.Z. Huange, X.C. Wang, Y. Liu, G.Q. Zhao, J. Zhang, Q.Q. Liu, R.Z. Yu, Y.W. Long, H. Wu, H.J. Lin, C.T. Chenf, Z. Lig, Z.Z. Gongh, Z. Guguchiah, J.S. Kimi, G.R. Stewarti, Y.J. Uemurah, S. Uchida, C.Q. Jin, Proc. Natl. Acad. Sci. U. S. A. 116, 12156–12160 (2019)

    ADS  Google Scholar 

  4. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63–64 (2001)

    ADS  Google Scholar 

  5. L. Gao, Z.J. Huang, R.L. Meng, J.G. Lin, F. Chen, L. Beauvais, Y.Y. Sun, Y.Y. Xue, C.W. Chu, Phys. C 213, 261–265 (1993)

    ADS  Google Scholar 

  6. J.G. Bednorz, K.A. Müller, Z. Phys. B: Condens. Matter 64, 189–193 (1986)

    ADS  Google Scholar 

  7. M.K. Wu, J.R. Ashburn, C.J. Torng, Phys. Rev. Lett. 58, 908–910 (1987)

    ADS  Google Scholar 

  8. B.W. Statt, Z. Wang, M.J.G. Lee, J.V. Yakhmi, P.C. De Camargo, Phys. C 156, 251–255 (1988)

    ADS  Google Scholar 

  9. M.A. Subramanian, J.C. Calabrese, C.C. Torardi, J. Gopalakrishnan, T.R. Askew, R.B. Flippen, K.J. Morrissey, U. Chowdhry, A.W. Sleight, Nature 332, 420–422 (1988)

    ADS  Google Scholar 

  10. A. Schilling, M. Cantoni, J.D. Guo, H.R. Ott, Nature 363, 56–58 (1993)

    ADS  Google Scholar 

  11. L. Gao, Y.Y. Xue, F. Chen, Q. Xiong, R.L. Meng, D. Ramirez, C.W. Chu, Phys. Rev. B 50, 4260–4263 (1994)

    ADS  Google Scholar 

  12. H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, H. Hosono, Nature 453, 376–387 (2008)

    ADS  Google Scholar 

  13. Z.A. Ren, W. Lu, J. Yang, W. Yi, X.L. Shen, Z.C. Li, G.C. Che, X.L. Dong, L.L. Sun, F. Zhou, Z.X. Zhao, Chin. Phys. Lett. 25, 2215–2216 (2008)

    ADS  Google Scholar 

  14. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175–1204 (1956)

    ADS  Google Scholar 

  15. N.W. Ashcroft, Phys. Rev. Lett. 21, 1748–1749 (1968)

    ADS  Google Scholar 

  16. P.D. Simpson, R.T. Howie, E. Gregoryanz, Nature 529, 63–67 (2016)

    ADS  Google Scholar 

  17. R.P. Dias, I.F. Silvera, Science 355, 1–9 (2017)

    Google Scholar 

  18. C.B. Satterthwaite, I.L. Toepke, Phys. Rev. Lett. 25, 741–743 (1970)

    ADS  Google Scholar 

  19. T. Skoskiewicz, Phys. Status Solidi B 59, 329–334 (1973)

    ADS  Google Scholar 

  20. W. Buckel, A. Eichler, B. Stritzker, Z. Phys. A: Hadrons Nucl. 263, 1–4 (1973)

    Google Scholar 

  21. B. Stritzker, Z. Phys. A: Hadrons Nucl. 268, 261–264 (1974)

    Google Scholar 

  22. J.M. Welter, F.J. Johnen, Z. Phys. B: Condens Matter. 27, 227–232 (1977)

    ADS  Google Scholar 

  23. A.E. Carlsson, N.W. Ashcroft, Phys. Rev. Lett. 50, 1305–1308 (1983)

    ADS  Google Scholar 

  24. N.W. Ashcroft, Phys. Rev. Lett. 92, 187002 (2004)

    ADS  Google Scholar 

  25. L.J. Zhang, Y.C. Wang, J. Lv, Y.M. Ma, Nat. Rev. Mater. 2, 1–16 (2017)

    ADS  Google Scholar 

  26. D.F. Duan, Y.X. Liu, Y.B. Ma, Z.J. Shao, B.B. Liu, T. Cui, Natl. Sci. Rev. 4(2017), 121–135 (2017)

    Google Scholar 

  27. Y.C. Wang, Y.M. Ma, J. Chem. Phys. 140, 040901 (2014)

    ADS  Google Scholar 

  28. M.I. Eremets, I.A. Trojan, S.A. Medvedev, J.S. Tes, Y. Yao, Science 319, 1506–1509 (2008)

    ADS  Google Scholar 

  29. H.K. Mao, X.J. Chen, Y. Ding, B. Li, L. Wang, Rev. Mod. Phys. 90, 015007 (2018)

    ADS  Google Scholar 

  30. C. Buzea, K. Robbie, Supercond. Sci. Technol. 18, R1–R8 (2005)

    ADS  Google Scholar 

  31. K. Shimiu, Phys. C 514(2015), 46–49 (2015)

    ADS  Google Scholar 

  32. C.R. Rotundu, T. Cuk, R.L. Greene, Z.X. Shen, R.J. Hemlty, Rev. Sci. Instrum. 84, 063903 (2013)

    ADS  Google Scholar 

  33. Y.C. Wang, J. Lv, L. Zhu, Y.M. Ma, Comput. Phys. Commun. 183, 2063–2070 (2012)

    ADS  Google Scholar 

  34. M. Jansen, Adv. Mater. 27, 3229–3242 (2015)

    Google Scholar 

  35. H.Y. Liu, W.W. Cui, Y.M. Ma, J. Chem. Phys. 137, 184502 (2012)

    ADS  Google Scholar 

  36. E. Zurek, W. Grochala, Phys. Chem. Chem. Phys. 17, 2917–2934 (2015)

    Google Scholar 

  37. A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Nature 525, 73–76 (2015)

    ADS  Google Scholar 

  38. A.P. Drozdov, P.P. Kong, V.S. Minkov, S.P. Besedin, M.A. Kuzovnikov, S. Mozaffari, L. Balicas, F.F. Balakirev, D.E. Graf, V.B. Prakapenka, E. Greenberg, D.A. Knyazev, M. Tkacz, M.I. Eremets, Nature 569, 528–531 (2019)

    ADS  Google Scholar 

  39. M. Somayazulu, M. Ahart, A.K. Mishra, Z.M. Geballe, M. Baldini, Y. Meng, V.V. Struzhkin, R.J. Hemley, Phys. Rev. Lett. 122, 027001 (2019)

    ADS  Google Scholar 

  40. W.L. McMillan, Phys. Rev. 167, 331–344 (1968)

    ADS  Google Scholar 

  41. P.B. Allen, R.C. Dynes, Phys. Rev. B 12, 905–922 (1975)

    ADS  Google Scholar 

  42. R.C. Dynes, Solid State Commun. 10, 615–618 (1972)

    ADS  Google Scholar 

  43. E. Zurek, T. Bi, J. Chem. Phys. 150, 050901 (2019)

    ADS  Google Scholar 

  44. J.A.F. Livas, L. Boeri, A. Sanna, G. Profeta, R. Arita, M. Eremets, Phys. Rep. 856, 1–78 (2020)

    ADS  MathSciNet  Google Scholar 

  45. H. Wang, J.S. Tse, K. Tanaka, T. Iitaka, Y.M. Ma, Proc. Natl. Acad. Sci. U. S. A. 109, 6463–6466 (2012)

    ADS  Google Scholar 

  46. W.H. Chen, D.V. Semenok, A.G. Kvashnin, X.L. Huang, I.A. Kruglov, M. Galasso, H. Song, D.F. Duan, A.F. Goncharov, V.B. Prakapenka, A.R. Oganov, T. Cui, Nat. Commun. 12, 1–9 (2021)

    Google Scholar 

  47. D.V. Semenok, A.G. Kvashnin, I.A. Kruglov, A.R. Oganov, J. Phys. Chem. Lett. 9, 1920–1926 (2018)

    Google Scholar 

  48. S.F. Qian, X.W. Sheng, X.Z. Yan, Y.M. Chen, B. Song, Phys. Rev. B 96, 094513 (2017)

    ADS  Google Scholar 

  49. X.L. Feng, J.R. Zhang, G.Y. Gao, H.Y. Liu, H. Wang, RSC Adv. 5, 1–3 (2015)

    Google Scholar 

  50. T.A. Strobel, P. Ganesh, M. Somayazulu, P.R.C. Kent, R.J. Hemley, Phys. Rev. Lett. 107, 255503 (2011)

    ADS  Google Scholar 

  51. J. Lv, Y. Sun, H.Y. Liu, Y.M. Ma, Matter Radiat. Extremes 5, 068101 (2020)

    Google Scholar 

  52. Y. Sun, H.Y. Liu, Y.M. Ma, Acta Phys. Sin. 70, 017407 (2021)

    Google Scholar 

  53. H.F. Li, X. Li, H. Wang, G.T. Liu, Y.W. Li, H.Y. Liu, New J. Phys. 21, 123009 (2019)

    Google Scholar 

  54. Y.W. Li, J. Hao, H.Y. Liu, Y.L. Li, Y.M. Ma, J. Chem. Phys. 140, 174712 (2014)

    ADS  Google Scholar 

  55. D.F. Duan, Y.X. Liu, F.B. Tian, D. Li, X.L. Huang, Z.L. Zhao, H.Y. Yu, B.B. Liu, W.J. Tian, T. Cui, Sci. Rep. 4, 6989 (2014)

    Google Scholar 

  56. Y.S. Yao, J.S. Tse, Chem. Eur. J. 24, 1–25 (2017)

    Google Scholar 

  57. M. Einaga, M. Sakata, T. Ishikawa, Nat. Phys. 12, 835–838 (2016)

    Google Scholar 

  58. X.L. Huang, X. Wang, D.F. Duan, Nal. Sci. Rev. 6, 713–718 (2019)

    Google Scholar 

  59. A.F. Goncharov, S.S. Lobanov, I. Kruglov, X.M. Zhao, X.J. Chen, A.R. Oganov, Z. Konopkova, V.B. Prakapenka, Phys. Rev. B 93, 174105 (2016)

    ADS  Google Scholar 

  60. B. Guigue, A. Marizy, P. Loubeyre, Phys. Rev. B 95, R020104 (2017)

    ADS  Google Scholar 

  61. F. Alexander, S.S. Goncharov, V.B. Lobanov, Phys. Rev. B 95, R140101 (2017)

    Google Scholar 

  62. E.E. Gordon, K. Xu, H.J. Xiang, A.B. Holder, R.K. Kremer, A. Simon, J. Kçhler, M.H. Whangbo, Angew. Chem. Int. Ed. 55, 3682–3685 (2016)

    Google Scholar 

  63. R. Martonak, A. Laio, M. Parrinello, Phys. Rev. Lett. 90, 075503 (2003)

    ADS  Google Scholar 

  64. A. Majumdar, J.S. Tse, Y.S. Yao, Angew. Chem. Int. Ed. 56, 11390–11393 (2017)

    Google Scholar 

  65. A. Majumdar, J.S. Tse, Y.S. Yao, Sci. Rep. 9, 5023 (2019)

    ADS  Google Scholar 

  66. W.D. Zhao, D.F. Duan, T. Cui, Chin. J. High Press. Phys. 35, 020101 (2021)

    Google Scholar 

  67. K. Tanaka, J.S. Tse, H. Liu, Phys. Rev. B 96, 100502 (2017)

    ADS  Google Scholar 

  68. I. Errea, M. Calandra, C.J. Pickard, J.R. Nelson, R.J. Needs, Y.W. Li, H.Y. Liu, Y.W. Zhang, Y.M. Ma, F. Mauri, Nature 532, 81–84 (2016)

    ADS  Google Scholar 

  69. F. Peng, Y. Sun, C.J. Pickard, R.J. Needs, Q. Wu, Y.M. Ma, Phys. Rev. Lett. 119, 107001 (2017)

    ADS  Google Scholar 

  70. N.P. Salke, M. Mahdi, D. Esfahani, Y.J. Zhang, I.A. Kruglov, J.S. Zhou, Y.G. Wang, E. Greenberg, V.B. Prakapenka, J. Liu, A.R. Oganov, J.F. Lin, Nat. Commun. 10, 1–10 (2019)

    Google Scholar 

  71. D.V. Semenok, D. Zhou, A.G. Kvashnin, X.L. Huang, M. Galasso, I.A. Kruglov, A.G. Ivanova, A.G. Gavriliuk, W.H. Chen, N.V. Tkachenko, A.I. Boldyrev, I. Troyan, A.R. Oganov, T. Cui, J. Phys. Chem. 12, 32–40 (2021)

    Google Scholar 

  72. X. Li, X.L. Huang, D.F. Duan, C.J. Pickard, D. Zhou, H. Xie, Q. Zhuang, Y.P. Huang, Q. Zhou, B.B. Liu, T. Cui, Nat. Commun. 10, 1–7 (2019)

    ADS  Google Scholar 

  73. D.V. Semenok, A.G. Kvashnin, A.G. Ivanova, V. Svitlyk, V.Y. Fominski, A.V. Sadakov, O.A. Sobolevskiy, V.M. Pudalov, I.A. Troyan, A.R. Ogano, Mater. Today 33, 36–44 (2019)

    Google Scholar 

  74. X.Q. Ye, N. Zarifi, E. Zurek, R. Hoffmann, N.W. Ashcroft, J. Phys. Chem. C 122, 6298–6309 (2018)

    Google Scholar 

  75. H.Y. Liu, I.I. Naumov, R. Hoffmann, N.W. Ashcroft, R.J. Hemley, Proc. Natl. Acad. Sci. U. S. A. 114, 6990–6995 (2017)

    ADS  Google Scholar 

  76. W.G. Sun, X.Y. Kuang, H.D.J. Keen, C. Lu, A. Hermann, Phys. Rev. B 102, 144524 (2020)

    ADS  Google Scholar 

  77. H.Y. Liu, I. Naumov, Z.M. Geballe, M. Somayazulu, J.S. Tse, R.J. Hemley, Phys. Rev. B 98, R100102 (2018)

    ADS  Google Scholar 

  78. P. P. Kong, V. S. Minkov, M. A. Kuzovnikov, S. P. Besedin, A. P. Drozdov, S. Mozaffari, L. Balicas, F. F. Balakirev, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. I. Eremets, arXiv 1909 10482

  79. I.A. Troyan, D.V. Semenok, A.G. Kvashnin, A.V. Sadakov, O.A. Sobolevskiy, V.M. Pudalov, A.G. Ivanova, V.B. Prakapenka, E. Greenberg, A.G. Gavriliuk, I.S. Lyubutin, V.V. Struzhkin, A. Bergara, I. Errea, R. Bianco, M. Calandra, F. Mauri, L. Monacelli, R. Akashi, A.R. Oganov, Adv. Mater. 33, 2006832 (2021)

    Google Scholar 

  80. C.M. Pépin, G. Geneste, A. Dewaele, M. Mezouar, Science 357, 382–385 (2017)

    ADS  Google Scholar 

  81. X. Zhong, H. Wang, J.R. Zhang, H.Y. Liu, S.T. Zhang, H.F. Song, G.C. Yang, L.J. Zhang, Y.M. Ma, Phys. Rev. Lett. 116, 057002 (2016)

    ADS  Google Scholar 

  82. D.W. Zhou, X.L. Jin, X. Meng, G. Bao, Y.M. Ma, B.B. Liu, T. Cui, Phys. Rev. B 86, 014118 (2012)

    ADS  Google Scholar 

  83. H. Xie, Y.S. Yao, X.L. Feng, D.F. Duan, H. Song, Z.H. Zhang, S.Q. Jiang, S.A.T. Redfern, V.Z. Kresin, C.J. Pickard, T. Cui, Phys. Rev. Lett. 125, 217001 (2020)

    ADS  Google Scholar 

  84. T. G. Bi, N. Zarifi, T. Terpstra, E. Zurek, arXiv: 1806.00163

  85. Y. Sun, J. Lv, Y. Xie, H.Y. Liu, Y.M. Ma, Phys. Rev. Lett. 123, 097001 (2019)

    ADS  Google Scholar 

  86. H. Wang, Y.S. Yao, F. Peng, H.Y. Liu, R.J. Hemley, Phys. Rev. Lett. 126, 117002 (2021)

    ADS  Google Scholar 

  87. X.W. Liang, A. Bergara, L.Y. Wang, B. Wen, Z.S. Zhao, X.F. Zhou, J.L. He, G.Y. Gao, Y.J. Tian, Phys. Rev. B 99, 100505 (2019)

    ADS  Google Scholar 

  88. E. Snider, N.D. Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K.V. Lawler, A. Salamat, R.P. Dias, Nature 586, 373–377 (2020)

    ADS  Google Scholar 

  89. A. D. Grockowiak, M. Ahart, T. Helm, W. A. Coniglio, R. Kumar, M. Somayazulu, Y. Meng, M. Oliff, V. Williams, N. W. Ashcroft, R. J. Hemley, S. W. Tozer, arXiv: 2006.03004

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of China (grant no. 11504007 and 12074138) and the Scientific and Technological Research Project of the “13th Five-Year Plan” of Jilin Provincial Education Department (grant no. JJKH20200031KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miao Zhang or Hanyu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhang, M. & Liu, H. Superconductive hydrogen-rich compounds under high pressure. Appl. Phys. A 127, 684 (2021). https://doi.org/10.1007/s00339-021-04802-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04802-4

Keywords

  • Superconductivity
  • Hydrogen-rich superconductor
  • High pressure