Skip to main content
Log in

Ab initio study of effect of Se vacancies on the electronic and thermoelectric properties of the two-dimensional Mo\(Se_2\) monolayer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of Se vacancies on the electronic and transport properties of Mo\(Se_2\) monolayer is studied using the density functional theory (DFT) and semi-classical Boltzmann transport theory. The calculated results show that the introduction of vacancies in the lattice results in the creation of dangling states in the gap region between conduction band minimum and valance band maximum. As a result, the band gap of the monolayer show decreased values. The transport properties of the monolayer are also greatly affected by the vacancies in the lattice. The power factor of the monolayer show decreased values with the introduction of vacancies in the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X. Zhang, L. D. Zhao, Thermoelectric materials: Energy conversion between heat and electricity, J. Materiomics 1 (2015) 92–105

    Article  Google Scholar 

  2. C. Uhlig, E. Guenes, A. S. Schulze, M. T. Elm, P. J. Klar, S. Schlecht, Nanoscale Fe\(S_2\) (pyrite) as a sustainable thermoelectric material, J. Electron. Mater 43 (2014) 2362–2370

    Article  ADS  Google Scholar 

  3. H. S. Kim, W. Liu, G. Chen, C. W. Chu, Z. Ren, Relationship between thermoelectric figure of merit and energy conversion efficiency, Proc. Natl. Acad. Sci. 112 (2015) 8205–8210

    Article  ADS  Google Scholar 

  4. S. Tang, M. Dresselhaus, Building the principle of thermoelectric ZT enhancement, arXiv preprint arXiv:1406.1842

  5. X. Wang, H. Lee, Y. Lan, G. Zhu, G. Joshi, D. Wang, J. Yang, A. Muto, M. Tang, J. Klatsky, et al., Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy, Appl. Phys. Lett. 93 (2008) 193121

    Article  ADS  Google Scholar 

  6. X. Li, J. Liu, S. Li, J. Zhang, D. Li, R. Xu, Q. Zhang, X. Zhang, B. Xu, Y. Zhang, et al., Synergistic band convergence and endotaxial nanostructuring: Achieving ultralow lattice thermal conductivity and high figure of merit in eco-friendly SnTe, Nano Energy 67 (2020) 104261

    Article  Google Scholar 

  7. S. Sumithra, N. J. Takas, D. K. Misra, W. M. Nolting, P. Poudeu, K. L. Stokes, Enhancement in thermoelectric figure of merit in nanostructured \(Bi_2\)\(Te_3\) with semimetal nanoinclusions, Adv. Energy Mater. 1 (2011) 1141–1147

    Article  Google Scholar 

  8. H. Lv, W. Lu, D. Shao, H. Lu, Y. Sun, Strain-induced enhancement in the thermoelectric performance of a Zr\(S_2\) monolayer, J. Mater. Chem. C 4 (2016) 4538–4545

    Article  Google Scholar 

  9. H. Guo, T. Yang, P. Tao, Y. Wang, Z. Zhang, High pressure effect on structure, electronic structure, and thermoelectric properties of Mo\(S_2\), J. Appl. Phys. 113 (2013) 013709

    Article  ADS  Google Scholar 

  10. A. Saini, S. Nag, R. Singh, A. Alshaikhi, R. Kumar, Unraveling the effect of isotropic strain on the transport properties of half-heusler alloy LiScGe, J. Alloys Compd. 859 (2021) 158232

    Article  Google Scholar 

  11. X. K. Chen, K. Q. Chen, Thermal transport of carbon nanomaterials, J. Condens. Matter Phys. 32 (2020) 153002

    Article  ADS  Google Scholar 

  12. T. Xing, C. Zhu, Q. Song, H. Huang, J. Xiao, D. Ren, M. Shi, P. Qiu, X. Shi, F. Xu, et al., Ultralow lattice thermal conductivity and superhigh thermoelectric figure-of-merit in (Mg, Bi) Co-Doped GeTe. Adv. Mater. 2008773 (2021)

  13. S. D. Kang, J.-H. Pöhls, U. Aydemir, P. Qiu, C. C. Stoumpos, R. Hanus, M. A. White, X. Shi, L. Chen, M. G. Kanatzidis, et al., Enhanced stability and thermoelectric figure-of-merit in copper selenide by lithium doping, Mater. Today Phys. 1 (2017) 7–13

    Article  Google Scholar 

  14. A.J. Ahmed, M.S.A. Hossain, S.M. Kazi Nazrul Islam, F. Yun, G. Yang, R. Hossain, A. Khan, J. Na, M. Eguchi, Y. Yamauchi, et al., Significant improvement in electrical conductivity and figure of merit of nanoarchitectured porous SrTi\(O_3\) by la doping optimization. ACS Appl. Mater. Interfaces 12: 28057–28064 (2020)

  15. L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature 508 (2014) 373–377

    Article  ADS  Google Scholar 

  16. D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan, Y. Zhang, Y. Li, H. Zhang, H. Xie, Recent progress of two-dimensional thermoelectric materials, Nanomicro Lett 12 (2020) 1–40

    ADS  Google Scholar 

  17. P. Yan, G.Y. Gao, G.Q. Ding, D. Qin, Bilayer M\(Se_2\) (M=Zr, Hf) as promising two-dimensional thermoelectric materials: a first-principles study. RSC Adv. 9: 12394–12403 (2019).

    Article  ADS  Google Scholar 

  18. S. Kumar, U. Schwingenschlogl, Thermoelectric response of bulk and monolayer mose2 and wse2, Chem. Mater. 27 (2015) 1278–1284

    Article  Google Scholar 

  19. S. S. Naghavi, J. He, Y. Xia, C. Wolverton, \(Pd_2\)\(Se_3\) monolayer: a promising two-dimensional thermoelectric material with ultralow lattice thermal conductivity and high power factor, Chem. Mater. 30 (2018) 5639–5647

    Article  Google Scholar 

  20. S. Nag, A. Saini, R. Singh, R. Kumar, Ultralow lattice thermal conductivity and anisotropic thermoelectric performance of AA stacked SnSe bilayer, Appl. Surf. Sci. 512 (2020) 145640

    Article  Google Scholar 

  21. K. Hippalgaonkar, Y. Wang, Y. Ye, D. Y. Qiu, H. Zhu, Y. Wang, J. Moore, S. G. Louie, X. Zhang, High thermoelectric power factor in two-dimensional crystals of Mo\(S_2\), Phys. Rev. B 95 (2017) 115407

    Article  ADS  Google Scholar 

  22. P. Mishra, D. Singh, Y. Sonvane, R. Ahuja, Two-dimensional boron monochalcogenide monolayer for thermoelectric material, Sustain. Energy Fuels 4 (2020) 2363–2369

    Article  Google Scholar 

  23. P. Z. Jia, Y. J. Zeng, D. Wu, H. Pan, X. H. Cao, W. X. Zhou, Z. X. Xie, J. X. Zhang, K. Q. Chen, Excellent thermoelectric performance induced by interface effect in Mo\(S_2\)/Mo\(Se_2\) van der waals heterostructure, J. Phys. Condens. Matter 32 (2019) 055302

    Article  ADS  Google Scholar 

  24. G. Ding, J. He, G. Gao, K. Yao, Two-dimensional Mo\(S_2\)-Mo\(Se_2\) lateral superlattice with minimized lattice thermal conductivity, J. Appl. Phys. 124 (2018) 165101

    Article  ADS  Google Scholar 

  25. X. K. Chen, M. Pang, T. Chen, D. Du, K. Q. Chen, Thermal rectification in asymmetric graphene/hexagonal boron nitride van der waals heterostructures, ACS Appl. Mater. Interfaces 12 (2020) 15517–15526

    Article  Google Scholar 

  26. K. X. Chen, X. M. Wang, D. C. Mo, S. S. Lyu, Thermoelectric properties of transition metal dichalcogenides: from monolayers to nanotubes, J. Phys. Chem. C 119 (2015) 26706–26711

    Article  Google Scholar 

  27. S. Nag, A. Saini, R. Singh, R. Kumar, Influence of vacancy defects on the thermoelectric performance of snse sheet, Phys. E: Low-Dimens. Syst. Nanostructures 134 (2021) 114814

    Article  Google Scholar 

  28. C. Adessi, S. Pecorario, S. Thebaud, G. Bouzerar, First principle investigation of the influence of sulfur vacancies on thermoelectric properties of single layered Mo\(S_2\), Phys. Chem. Chem. Phys. 22 (2020) 15048–15057

    Article  Google Scholar 

  29. S. Gowthamaraju, U. Deshpande, P. Bhobe, Understanding the role of defects in influencing the thermoelectric properties of SnSe, Curr Appl Phys 24 (2021) 19–23

    Article  ADS  Google Scholar 

  30. B. Ghosh, A. Gupta, Effect of defects on the electronic properties of W\(S_2\) armchair nanoribbon, J. Semicond. 36 (2015) 013003

    Article  ADS  Google Scholar 

  31. Z. Yan, M. Yoon, S. Kumar, Influence of defects and doping on phonon transport properties of monolayer Mo\(Se_2\). 2D Mater. 5: 031008 (2018)

  32. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Condens. Matter Phys. 21 (2009) 395502

    Article  Google Scholar 

  33. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865

    Article  ADS  Google Scholar 

  34. H. J. Monkhorst, J. D. Pack, Special points for brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188

    Article  ADS  MathSciNet  Google Scholar 

  35. G.K. Madsen, D.J. Singh, Boltztrap: a code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175 (2006) 67–71.

    Article  ADS  Google Scholar 

  36. H. Shi, D. Parker, M.H. Du, D.J. Singh, Connecting thermoelectric performance and topological-insulator behavior: \(Bi_2Te_3\) and \(Bi_2Te_2\) se from first principles. Phys. Rev. Appl. 014004 (2015)

  37. T. M. Tritt, Thermoelectric phenomena, materials, and applications, Annu. Rev. Mater. Res. 41 (2011) 433–448

    Article  ADS  Google Scholar 

  38. K. Kuroki, R. Arita, pudding mold band drives large thermopower in \({Na_xCoO_2}\), J. Phys. Soc. Japan. 76 (2007) 083707–083707

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (130-222-D1440). The authors, therefore, acknowledge with thanks DSR technical and financial support. Ranjan Kumar is also thankful to King Abdulaziz University\('\)s High-Performance Computing Center (Aziz Supercomputer)(http://hpc.kau.edu.sa) for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Kumar.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R. Ab initio study of effect of Se vacancies on the electronic and thermoelectric properties of the two-dimensional Mo\(Se_2\) monolayer. Appl. Phys. A 127, 635 (2021). https://doi.org/10.1007/s00339-021-04780-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04780-7

Keywords

Navigation