Skip to main content

Advertisement

Log in

Electric and thermoelectric properties of (SbSn)xSe100−x chalcogenide glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electric conductivity and thermoelectric power for different compositions of the chalcogenide glasses (SbSn)xSe100−x (x = 4, 8, 12, 16 and 20 at.%) were measured experimentally. The dc conductivity is found to have an Arrhenius behavior in the temperature range (300–450) K with typical activation energies decreasing from 0.87 to 0.74 eV with the SbSn content. The concentrations of charge carriers, as well as their mobility and characteristic relaxation time were deduced in the same temperature range and compositions. The variations of activation energy calculated from measured electric conductivity versus SbSn content are compared to the behavior of calculated half band gap. From the measured Seebeck coefficient, we deduced its specific activation energy and found that it is lower than that related to electric conductivity. This difference is assumed to be the activation energy needed for polaron hopping. The increase in cross-linking with SbSn content is proposed as an explanation for the increase in polaron-hopping activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Chen, R. Liu, X. Shi, Thermoelectric Materials and Devices (Elsevier, Amsterdam, Netherlands, 2021), pp. 1–3

    Book  Google Scholar 

  2. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, Adv. Mater. 19(8), 1043–1053 (2007)

    Article  Google Scholar 

  3. H. Alam, S. Ramakrishna, Nano Energy 2(2), 190–212 (2013)

    Article  Google Scholar 

  4. B. Jiang, Yu. Yong, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Yi. Huang, S. Ning, B. Jia, Science 371(6531), 830–834 (2021)

    Article  ADS  Google Scholar 

  5. N. Tohge, T. Minami, M. Tanaka, Jpn. J. Appl. Phys. 16(6), 977 (1977)

    Article  ADS  Google Scholar 

  6. D. Emin, C.H. Seager, R.K. Quinn, Phys. Rev. Lett. 28(13), 813 (1972)

    Article  ADS  Google Scholar 

  7. Z.H. Khan, M. Zulfeqaur, A. Kumar, M. Husain, Can. J. Phys. 80(1), 19–27 (2002)

    Article  ADS  Google Scholar 

  8. M.H. Cohen, H. Fritzsche, S.R. Ovshinsky, Phys. Rev. Lett. 22(20), 1065 (1969)

    Article  ADS  Google Scholar 

  9. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Oxford University Press, 1979)

    Google Scholar 

  10. H. Overhof, W. Beyer, On the transport mechanism in chalcogenide glasses. Philos. Mag. B 49(1), L9–L14 (1984). https://doi.org/10.1080/13642818408246493

    Article  ADS  Google Scholar 

  11. K.A. Aly, A. Dahshan, Gh. Abbady, Y. Saddeek, Phys. B 497, 1–5 (2016)

    Article  ADS  Google Scholar 

  12. S. Znaidia, I. Kebaili, I. Boukhris, R. Neffati, H.H. Somaily, H. Algarni, H.H. Hegazy, K.A. Aly, A. Dahshan, Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-3321-2

    Article  Google Scholar 

  13. J. Solyom, Fundamentals of the Physics of Solids, (Electronic Properties) (Springer-Verlag, Berlin Heidelberg, 2009)

    Book  Google Scholar 

  14. M.S. Dresselhaus, Solid state physics part 1 “Transport properties of solids”. (MIT open course, 2001). http://web.mit.edu/course/6/6.732/www/6.732-pt1.pdf

  15. H. Fritzsche, Solid State Commun. 9(21), 1813–1815 (1971)

    Article  ADS  Google Scholar 

  16. Y. Shi, C. Sturm, H. Kleinke, J. Solid State Chem. 270, 273–279 (2019)

    Article  ADS  Google Scholar 

  17. A.P. Gonçalves, E.B. Lopes, O. Rouleau, C. Godart, J. Mater. Chem. 20(8), 1516–1521 (2010)

    Article  Google Scholar 

  18. A.R. Hilton, Chalcogenide Glasses for Infrared Optics (McGraw-Hill Education, 2010)

    Google Scholar 

  19. R. Fairman, B. Ushkov, Semiconducting Chalcogenide Glass III: Applications of Chalcogenide Glasses (Elsevier, 2004)

    Google Scholar 

  20. B. Gahtori, S. Bathula, K. Tyagi, M. Jayasimhadri, A.K. Srivastava, S. Singh, R.C. Budhani, A. Dhar, Nano Energy 13, 36–46 (2015)

    Article  Google Scholar 

  21. A.A. Olvera, N.A. Moroz, P. Sahoo, P. Ren, T.P. Bailey, A.A. Page, C. Uher, P.F.P. Poudeu, Energy Environ. Sci. 10(7), 1668–1676 (2017)

    Article  Google Scholar 

  22. F.M. Abdel-Rahim, K.A. Aly, A. Dahshan, Mater. Chem. Phys. 128(3), 543–547 (2011)

    Article  Google Scholar 

  23. P. Kumar, R. Thangaraj, J Non-Cryst. Sol. 352(21–22), 2288–2291 (2006)

    Article  ADS  Google Scholar 

  24. R. Neffati, I. Boukhris, I. Kebaili, A. Dahshan, Philos. Mag. 101(4), 450–467 (2020)

    Article  ADS  Google Scholar 

  25. I. Boukhris, I. Kebaili, S. Znaidia, R. Neffati, H.H. Hegazy, K.A. Aly, N. Mehta, A. Dahshan, Phys. B Condens. Matter 583, 412066 (2020)

    Article  Google Scholar 

  26. A.S. Hassanien, R. Neffati, K.A. Aly, Optik 212, 164681 (2020)

    Article  ADS  Google Scholar 

  27. R. Neffati, I. Boukhris, I. Kebaili, K.A. Aly, Y.B. Saddeek, A. Dahshan, J. Non-Cryst. Solids 546, 120261 (2020)

    Article  Google Scholar 

  28. R.M. Hassan, R. Neffati, A.M. Abd-Elnaiem, A. Dahshan, J Phys. Scr. 96(8), 085703 (2021)

    Article  ADS  Google Scholar 

  29. A.P. Gonçalves, G. Delaizir, E.B. Lopes, L.M. Ferreira, O. Rouleau, C. Godart, J. Electron. Mater. 40(5), 1015–1017 (2011)

    Article  ADS  Google Scholar 

  30. H.A.V. Plas, R.H. Bube, J. Non-Cryst, Solids 24, 377–398 (1977)

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under grant number (R.G. P.2/81/41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Neffati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neffati, R., Aly, K. & Dahshan, A. Electric and thermoelectric properties of (SbSn)xSe100−x chalcogenide glasses. Appl. Phys. A 127, 639 (2021). https://doi.org/10.1007/s00339-021-04777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04777-2

Keywords

Navigation