Skip to main content
Log in

Ce-doped α-Fe2O3 nanoparticles prepared by hydrothermal method used in corrosion-resistant field: effects of pH on the structure, morphology and chemical stability

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ce-doped α-Fe2O3 nanoparticles were successfully synthesized by hydrothermal method at different pH. The relationship between the pH of the solution and the morphology, structure and electrochemical stability of the prepared Ce-doped α-Fe2O3 nanoparticles was investigated by X-ray diffraction, transmission electron microscopy, scanning electron microscope, Fourier transform infrared, X-ray photoelectron spectroscopy, electrochemical methods and saltwater immersion experiment. The results showed that the Ce-doped α-Fe2O3 nanoparticles prepared at pH = 4 and pH = 6 had surface defects structure, and the Ce-doped α-Fe2O3 nanoparticles prepared at pH = 8 had adhesion structures, which were CeO2 nanoparticles adhered to the α-Fe2O3 nanoparticles’ surface. The fact that Ce ions could be readily doped into the α-Fe2O3 lattice, causing lattice distortion and increasing the binding energy of Fe3+ in the lattice, thereby enhancing the stability of Fe–O bonds correspondingly. At the same time, the surface defect structure is produced, which has the effect of promoting the compactness of the coating. The surface defects structure of α-Fe2O3 has stronger electrochemical stability than the adhesion structure of α-Fe2O3 and Bayer α-Fe2O3. It was found that waterborne acrylic coatings prepared from of α-Fe2O3 with surface defects structure had a stronger hindering effect on the diffusion of charged ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.R. Baer, P.E. Burrows, A.A. El-Azab, Enhancing coating functionality using nanoscience and nanotechnology. Prog. Org. Coat. 47, 342–356 (2003). https://doi.org/10.1016/S0300-9440(03)00127-9

    Article  Google Scholar 

  2. A. Mathiazhagan, R. J. I. J. o. C. E. Joseph and Applications, Nanotechnology-a New prospective in organic coating-review. Int. J. Chem. Eng. Appl. 2, 225 (2011)

  3. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X.J.S.O.T.T.E. Xie, Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 424, 1–10 (2012). https://doi.org/10.1016/j.scitotenv.2012.02.023

    Article  ADS  Google Scholar 

  4. L.S. Zhong, J.S. Hu, H.P. Liang, A.M. Cao, W.G. Song, L.J. Wan, Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 18, 2426–2431 (2006). https://doi.org/10.1016/10.1002/adma.200600504

    Article  Google Scholar 

  5. M. Ramaprakash, G. Sreedhar, S. Mohan, S. Panda, Corrosion protection studies of CeO2-TiO2 nanocomposite coatings on mild steel. Trans. IMF 94, 254–258 (2016). https://doi.org/10.1080/00202967.2016.1209892

    Article  Google Scholar 

  6. M. Sorescu, L. Diamandescu, V. Teodorescu, Structure and characterization of cerium-doped hematite nanoparticles. Phys. B (Amsterdam, Neth.) 403, 3838–3845 (2008). https://doi.org/10.1016/j.physb.2008.07.027

    Article  ADS  Google Scholar 

  7. G. Zhao, J. Li, X. Niu, K. Tang, S. Wang, W. Zhu, X. Ma, M. Ru, Y. Yang, Facile synthesis of Mn-doped Fe2O3 nanostructures: enhanced CO catalytic performance induced by manganese doping. New J. Chem. 40, 3491–3498 (2016). https://doi.org/10.1039/c5nj03694a

    Article  Google Scholar 

  8. J. Lai, K.V. Shafi, K. Loos, A. Ulman, Y. Lee, T. Vogt, C. Estournès, Doping γ-Fe2O3 nanoparticles with Mn (III) suppresses the transition to the α-Fe2O3 structure. J. Am. Chem. Soc. 125, 11470–11471 (2003). https://doi.org/10.1021/ja035409d

    Article  Google Scholar 

  9. J. Zhang, H. Kumagai, K. Yamamura, S. Ohara, S. Takami, A. Morikawa, H. Shinjoh, K. Kaneko, T. Adschiri, A. Suda, Extra-low-temperature oxygen storage capacity of CeO2 nanocrystals with cubic facets. Nano Lett. 11, 361–364 (2011). https://doi.org/10.1021/nl102738n

    Article  ADS  Google Scholar 

  10. J. Ning, P. Shi, M. Jiang, C. Liu, Z. Jia, Synthesis and characterization of cerium oxide/iron oxide nanocomposite and its surface acid-base characteristics. J. Environ. Chem. Eng. 9, 105540 (2021). https://doi.org/10.1016/j.jece.2021.105540

    Article  Google Scholar 

  11. N.A. Dharanipragada, M. Meledina, V.V. Galvita, H. Poelman, S. Turner, G. Van Tendeloo, C. Detavernier, G.B. Marin, Deactivation study of Fe2O3-CeO2 during redox cycles for CO production from CO2. Ind. Eng. Chem. Res. 55, 5911–5922 (2016). https://doi.org/10.1021/acs.iecr.6b00963

    Article  Google Scholar 

  12. X. Mou, B. Zhang, Y. Li, L. Yao, X. Wei, D.S. Su, W. Shen, Rod-shaped Fe2O3 as an efficient catalyst for the selective reduction of nitrogen oxide by ammonia. Angew. Chem. Int. Ed. 51, 2989–2993 (2012). https://doi.org/10.1002/anie.201107113

    Article  Google Scholar 

  13. A. Lassoued, M.S. Lassoued, B. Dkhil, A. Gadri, S. Ammar, Structural, optical and morphological characterization of Cu-doped α-Fe2O3 nanoparticles synthesized through co-precipitation technique. J. Mol. Struct. 1148, 276–281 (2017). https://doi.org/10.1016/j.molstruc.2017.07.051

    Article  ADS  Google Scholar 

  14. L. Wang, T. Fei, Z. Lou, T. Zhang, Three-dimensional hierarchical flowerlike α-Fe2O3 nanostructures: synthesis and ethanol-sensing properties. ACS Appl. Mater. Interfaces. 3, 4689–4694 (2011). https://doi.org/10.1021/am201112z

    Article  Google Scholar 

  15. A.H. Haviv, J.-M. Grenèche, J.-P. Lellouche, Aggregation control of hydrophilic maghemite (γ-Fe2O3) nanoparticles by surface doping using cerium atoms. J. Am. Chem. Soc. 132, 12519–12521 (2010). https://doi.org/10.1021/ja103283e

    Article  Google Scholar 

  16. Y. Ni, X. Ge, Z. Zhang, Q. Ye, Fabrication and characterization of the plate-shaped γ-Fe2O3 nanocrystals. Chem. Mater. 14, 1048–1052 (2002). https://doi.org/10.1021/cm010446u

    Article  Google Scholar 

  17. J. Qiu, C. Liu, Solid phase equilibrium relations in the CaO-SiO2-Nb2O5-La2O3 system at 1273 K. Metall. Mater. Trans. B. 49, 69–77 (2018). https://doi.org/10.1007/s11663-017-1144-0

    Article  Google Scholar 

  18. B. Zhang, C. Liu, C. Li, M. Jiang, A novel approach for recovery of rare earths and niobium from bayan obo tailings. Miner. Eng. 65, 17–23 (2014). https://doi.org/10.1016/j.mineng.2014.04.011

    Article  Google Scholar 

  19. B. Zhang, C. Liu, C. Li, M. Jiang, Separation and recovery of valuable metals from low-grade REE-Nb-Fe ore. Int. J. Miner. Process. 150, 16–23 (2016). https://doi.org/10.1016/j.minpro.2016.03.004

    Article  Google Scholar 

  20. C. Liu, J. Qiu, Phase equilibrium relations in the specific region of CaO-SiO2-La2O3 system. J. Eur. Ceram. Soc. 38, 2090–2097 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.12.011

    Article  Google Scholar 

  21. X. Yang, X. Lian, S. Liu, J. Tian, C. Jiang, G. Wang, J. Chen, R. Wang, Investigation of enhanced photoelectrochemical property of cerium doped hematite film prepared by sol-gel route. Int. J. Electrochem. Sci. 8, 3721–3730 (2013)

    Google Scholar 

  22. C. Yilmaz, U. Unal, Morphology and crystal structure control of α-Fe2O3 films by hydrothermal-electrochemical deposition in the presence of Ce3+ and/or acetate F- ions. RSC Adv. 6, 8517–8527 (2016). https://doi.org/10.1039/c5ra20105e

    Article  ADS  Google Scholar 

  23. M. Ferreira, R. Duarte, M. Montemor, A. Simões, Silanes and rare earth salts as chromate replacers for pre-treatments on galvanised steel. Electrochim. Acta. 49, 2927–2935 (2004). https://doi.org/10.1016/j.electacta.2004.01.051

    Article  Google Scholar 

  24. S. Li, Q. Wang, T. Chen, Z. Zhou, Y. Wang, J. Fu, Study on cerium-doped nano-TiO2 coatings for corrosion protection of 316 L stainless steel. Nanoscale Res. Lett. 7, 1–9 (2012). https://doi.org/10.1186/1556-276x-7-227

    Article  ADS  Google Scholar 

  25. T. Wang, G. Yang, J. Liu, B. Yang, S. Ding, Z. Yan, T. Xiao, Orthogonal synthesis, structural characteristics, and enhanced visible-light photocatalysis of mesoporous Fe2O3/TiO2 heterostructured microspheres. Appl. Surf. Sci. 311, 314–323 (2014). https://doi.org/10.1016/j.apsusc.2014.05.060

    Article  ADS  Google Scholar 

  26. G. Yang, B. Yang, T. Xiao, Z. Yan, One-step solvothermal synthesis of hierarchically porous nanostructured CdS/TiO2 heterojunction with higher visible light photocatalytic activity. Appl. Surf. Sci. 283, 402–410 (2013). https://doi.org/10.1016/j.apsusc.2013.06.122

    Article  ADS  Google Scholar 

  27. J. Ning, P. Shi, M. Jiang, C. Liu, X. Li, Effect of Ce doping on the structure and chemical stability of nano-α-Fe2O3. Nanomaterials 9, 1039 (2019). https://doi.org/10.3390/nano9071039

    Article  Google Scholar 

  28. D. Wang, L. Jin, Y. Li, D. Yao, J. Wang, H. Hu, Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe2O3. Energy 162, 542–553 (2018). https://doi.org/10.1016/j.energy.2018.08.038

    Article  Google Scholar 

  29. X. Wang, T. Wang, G. Si, Y. Li, S. Zhang, X. Deng, X. Xu, Oxygen vacancy defects engineering on Ce-doped α-Fe2O3 gas sensor for reducing gases. Sens. Actuators, B Chem. 302, 127165 (2020). https://doi.org/10.1016/j.snb.2019.127165

    Article  Google Scholar 

  30. L. Guo, H. Arafune, N.J.L. Teramae, Synthesis of mesoporous metal oxide by the thermal decomposition of oxalate precursor. Langmuir 29, 4404–4412 (2013). https://doi.org/10.1021/la400323f

    Article  Google Scholar 

  31. C. Yu, X. Dong, L. Guo, J. Li, F. Qin, L. Zhang, J. Shi, D. Yan, Template-free preparation of mesoporous Fe2O3 and its application as absorbents. J. Phys. Chem. C. 112, 13378–13382 (2008). https://doi.org/10.1021/jp8044466

    Article  Google Scholar 

  32. F. Perez-Alonso, I. Melián-Cabrera, M.L. Granados, F. Kapteijn, J.G. Fierro, Synergy of FexCe1-xO2 mixed oxides for N2O decomposition. J. Catal. 239, 340–346 (2006). https://doi.org/10.1016/j.jcat.2006.02.008

    Article  Google Scholar 

  33. J. Kurian, M. Naito, Growth of epitaxial CeO2 thin films on r-cut sapphire by molecular beam epitaxy. Phys. C (Amsterdam, Neth.) 402, 31–37 (2004). https://doi.org/10.1016/j.physc.2003.08.007

    Article  ADS  Google Scholar 

  34. A. Ubale, M. Belkhedkar, Size dependent physical properties of nanostructured α-Fe2O3 thin films grown by successive ionic layer adsorption and reaction method for antibacterial application. J. Mater. Sci. Technol. (Sofia, Bulg.) 31, 1–9 (2015). https://doi.org/10.1016/j.jmst.2014.11.011

    Article  Google Scholar 

  35. I. Lee, J.K. Cho, H.S. Kim, K.S. Kim, Ab initio studies on the correlation of force constant vs bond length in the transition state of methyl-transfer reactions. J. Phys. Chem. 94, 5190–5193 (1990)

    Article  Google Scholar 

  36. R. Liu, X. Yang, C.L. Anfuso, Z. Huang, L. Han, Plasmonic α-Fe2O3 photoanodes for solar water splitting. Rev. Adv. Sci. Eng. 3, 331–339 (2014). https://doi.org/10.1166/rase.2014.1079

    Article  Google Scholar 

  37. R. Reveendran, M.A. Khadar, Structural, optical and electrical properties of Cu doped α-Fe2O3 nanoparticles. Mater. Chem. Phys. 219, 142–154 (2018). https://doi.org/10.1016/j.matchemphys.2018.08.016

    Article  Google Scholar 

  38. P. Shikha, B. Randhawa, T.S. Kang, Greener synthetic route for superparamagnetic and luminescent α-Fe2O3 nanoparticles in binary mixtures of ionic liquid and ethylene glycol. RSC Adv. 5, 51158–51168 (2015). https://doi.org/10.1039/c5ra07218b

    Article  ADS  Google Scholar 

  39. F. Meng, L. Wang, J. Cui, Controllable synthesis and optical properties of nano-CeO2 via a facile hydrothermal route. J. Alloys Compd. 556, 102–108 (2013). https://doi.org/10.1016/j.jallcom.2012.12.096

    Article  Google Scholar 

  40. L. Cui, J. Cui, H. Zheng, Y. Wang, Y. Qin, X. Shu, J. Liu, Y. Zhang, Y. Wu, Construction of NiO/MnO2/CeO2 hybrid nanoflake arrays as platform for electrochemical energy storage. J. Power Sources 361, 310–317 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.013

    Article  ADS  Google Scholar 

  41. L. Wang, F. Meng, K. Li, F. Lu, Characterization and optical properties of pole-like nano-CeO2 synthesized by a facile hydrothermal method. Appl. Surf. Sci. 286, 269–274 (2013). https://doi.org/10.1016/j.apsusc.2013.09.067

    Article  ADS  Google Scholar 

  42. A. Cabral, L. Cavalcante, R. Deus, E. Longo, A. Simões, F. Moura, Photoluminescence properties of praseodymium doped cerium oxide nanocrystals. Ceram. Int. 40, 4445–4453 (2014). https://doi.org/10.1016/j.ceramint.2013.08.117

    Article  Google Scholar 

  43. F. Meng, J. Gong, Z. Fan, H. Li, J. Yuan, Hydrothermal synthesis and mechanism of triangular prism-like monocrystalline CeO2 nanotubes via a facile template-free hydrothermal route. Ceram. Int. 42, 4700–4708 (2016). https://doi.org/10.1016/j.ceramint.2015.11.123

    Article  Google Scholar 

  44. R. Si, M. Flytzani-Stephanopoulos, Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water–gas shift reaction. Angew. Chem. 120, 2926–2929 (2008). https://doi.org/10.1002/anie.200705828

    Article  Google Scholar 

  45. M. Konsolakis, Z. Ioakimidis, T. Kraia, G.E. Marnellos, Hydrogen production by ethanol steam reforming (ESR) over CeO2 supported transition metal (Fe Co, Ni, Cu) catalysts: insight into the structure-activity relationship. Catalysts 6, 39 (2016). https://doi.org/10.3390/catal6030039

    Article  Google Scholar 

  46. K. Zhou, X. Wang, X. Sun, Q. Peng, Y. Li, Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal. 229, 206–212 (2005). https://doi.org/10.1016/j.jcat.2004.11.004

    Article  Google Scholar 

  47. H.-X. Mai, L.-D. Sun, Y.-W. Zhang, R. Si, W. Feng, H.-P. Zhang, H.-C. Liu, C.-H. Yan, Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B. 109, 24380–24385 (2005). https://doi.org/10.1021/jp055584b

    Article  Google Scholar 

  48. X.-S. Huang, H. Sun, L.-C. Wang, Y.-M. Liu, K.-N. Fan, Y. Cao, Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation. Appl. Catal., B 90, 224–232 (2009). https://doi.org/10.1016/j.apcatb.2009.03.015

    Article  Google Scholar 

  49. S. Pourhashem, F. Saba, J. Duan, A. Rashidi, F. Guan, E.G. Nezhad, B. Hou, Polymer/Inorganic nanocomposite coatings with superior corrosion protection performance: a review. J. Ind. Eng. Chem. (2020). https://doi.org/10.1016/j.jiec.2020.04.029

    Article  Google Scholar 

  50. X. Shi, T.A. Nguyen, Z. Suo, Y. Liu, R. Avci, Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surf. Coat. Technol. 204, 237–245 (2009). https://doi.org/10.1016/j.surfcoat.2009.06.048

    Article  Google Scholar 

  51. V. Sumi, S. Arunima, M. Deepa, M.A. Sha, A. Riyas, M. Meera, V.S. Saji, S. Shibli, PANI-Fe2O3 composite for enhancement of active life of alkyd resin coating for corrosion protection of steel. Mater. Chem. Phys. 247, 122881 (2020). https://doi.org/10.1016/j.matchemphys.2020.122881

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [51874082], National Key R&D Program of China [2017YFC0805100] and Open project supported by the key laboratory for ecological metallurgy of multimetallic ores (Ministry of Education) [NEMM2019002]. Thanks are due to Yingying Yue and Jiyu Qiu for providing language help and writing assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiyang Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, J., Shi, P., Jiang, M. et al. Ce-doped α-Fe2O3 nanoparticles prepared by hydrothermal method used in corrosion-resistant field: effects of pH on the structure, morphology and chemical stability. Appl. Phys. A 127, 604 (2021). https://doi.org/10.1007/s00339-021-04766-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04766-5

Keywords

Navigation