Skip to main content
Log in

Transport properties and dielectric response of Pr0.8Na0.2-xKxMnO3 (x = 0, 0.05, 0.1, 0.15 and 0.2) ceramics synthesized by sol–gel method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of substituting sodium by potassium on electrical and dielectric properties is investigated in details for the GdFeO3-type Pr0.8Na0.2-xKxMnO3 (x = 0.00, 0.05, 0.1, 0.15 and 0.2) manganites. The electrical measurements indicate that the parent compound exhibits a metal behavior. When introducing potassium, all samples show a metal–semiconductor transition. Then, the increase of K content reduces the resistivity in the whole temperature range but doesn’t affect the metal–semiconductor temperature transition (TMS). At a specific temperature TS, a saturation region was marked in the resistivity curve. It is found that TS values shift toward lower temperatures when the potassium content rises. The TS value approaches to room temperature for x = 0.2. The temperature coefficient of resistance (TCR) of the investigated manganites shows significant value, especially for x = 0, indicating that these ceramics can be used for a specific application such as bolometer technology. The frequency dependence of conductance was investigated through Jonscher's universal power law and the electrical conduction mechanism well interpreted by the correlated barrier hopping (CBH) model. Impedance spectroscopy measurements indicate that the electrical behavior of these perovskites is primarily dominated by the grain boundary response. The dependence of the dielectric constant on the frequency and the temperature confirms that the investigated samples are of a classical dielectric type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Uehara, S. Mori, C.H. Chen, S.-W. Cheong, Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560–563 (1999)

    Article  ADS  Google Scholar 

  2. M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325 (2007)

    Article  ADS  Google Scholar 

  3. S. Choura-Maatar, R. M’nassri, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, (2017) Role of lanthanum vacancy on the structural, magnetic and magnetocaloric properties in the lacunar perovskite manganites La0.8−x xNa0.2MnO3 (0 ≤ x ≤ 0.15), RSC Adv., 7 (79), 50347–50357

  4. L. Ting-xian, Z. Fei-peng, F. Hui, Y. Li Kuo-she, Feng-jun, The magnetoelectric properties of La0.7Sr0.3MnO3/BaTiO3 bilayers with various orientations. J. Alloys Compd. 560, 167 (2013)

    Article  Google Scholar 

  5. H. Rahmouni, B. Cherif, M. Baazaoui, K. Khirouni, Effects of iron concentrations on the electrical properties of La0. 67Ba0. 33Mn1− xFexO3. J. Alloys Compd. 575, 5 (2013)

    Article  Google Scholar 

  6. V.S. Kolat, H. Gencer, M. Gunes, S. Atalay, Effect of B-doping on the structural, magnetotransport and magnetocaloric properties of La0.67Ca0.33MnO3 compounds. Mater. Sci. Eng. B. 140, 212 (2007)

    Article  Google Scholar 

  7. N. Khare, D.P. Singh, H.K. Gupta, P.K. Siwach, O.N. Srivastava, Preparation and study of silver added La0.67Ca0.33MnO3 film. J. Phys. Chem. Solids. 65, 867 (2004)

    Article  ADS  Google Scholar 

  8. V.B. Naik, R. Mahendiran, Normal and inverse magnetocaloric effects in ferromagnetic Sm06−xLaxSr0.4MnO3. J. Appl. Phys. 110, 053915 (2011)

    Article  ADS  Google Scholar 

  9. T. Barbier, C. Autret-Lambert, C. Honstrette, F. Gervais, M. Lethiecq, Dielectric properties of hexagonal perovskite ceramics prepared by different routes. Mater. Res. Bull. 47, 4427 (2012)

    Article  Google Scholar 

  10. J.H. Miao, S.L. Yuan, G.M. Ren, X. Xiao, G.Q. Yu, Y.Q. Wang, S.Y. Yin, Effect of sintering temperature on electrical transport of La0.67Ca0.33MnO3 granular system with 4% CuO addition. J. Alloys Compd. 448, 27 (2008)

    Article  Google Scholar 

  11. R. Sakka, M’nassri, S. Tarhouni, W. Cheikhrouhou-Koubaa, N. Chniba-Boudjada, M. Oumezzine, A. Cheikhrouhou, , Impact of synthesis routes on normal and inverse magnetocaloric effects and critical behaviour in the charge-ordered Pr0.5Sr0.5MnO3 manganite. Eur. Phys. J. Plus 134(5), 216 (2019)

    Article  Google Scholar 

  12. H. Ben Khlifa, R. M’nassri, W. Cheikhrouhou-Koubaa, E. K. Hlil, and A. Cheikhrouhou, , Effects of synthesis route on the structural, magnetic and magnetocaloric properties of Pr0.8K0.2MnO3. Ceram. Int. 43, 1853–1861 (2017)

    Article  Google Scholar 

  13. R. M’nassri, N. Chniba, A. Cheikhrouhou Boudjada, Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr0.5Eu0.1Sr0.4MnO3 manganites. J. Alloys Comp. 626, 20–28 (2015)

    Article  Google Scholar 

  14. F. Nucara, W.S. MilettoGranozio, A. Mohamed, R. Vecchione, P.P. Fittipaldi, M. Perna, F.M. Radovic, P. Calvani Vitucci, Optical spectra of LaMn0.5Ga0.5O3: A contribution to the assignment of the electronic transitions in manganites. Phys. B: Condens. Matter. 433, 102 (2014)

    Article  ADS  Google Scholar 

  15. L. Seetha Lakshmi, V. Sridharan, D.V. Natarajan, R. Rawat, V. Sharat Chandra, T.S. Radhakrishnan SankaraSastry, Double metal–insulator transitions and MR in La0.67Ca0.33Mn1− xRuxO3 (x⩽ 0.10): a qualitative understanding in light of possible magnetic phase separation. J. Magn. Magn. Mater. 279, 41 (2004)

    Article  ADS  Google Scholar 

  16. R. M’nassri, Preparation and physical characterization of the magnetocaloric effect in manganites, Ph.D. thesis, Grenoble Alpe University, (2013) 〈NNT : 2013GRENY076〉. 〈tel-01560653〉

  17. J.H. Kuo, H.U. Anderson, D.M. Sparlin, Oxidation-reduction behavior of undoped and Sr-doped LaMnO3 nonstoichiometry and defect structure. J. Solid State Chem. 83, 52 (1989)

    Article  ADS  Google Scholar 

  18. R. M’nassri, A. Cheikhrouhou, Evolution of magnetocaloric behavior in oxygen deficient La2/3Ba1/3MnO3−δ manganites. J. Supercond. Nov. Magn. 27, 1463 (2014)

    Article  Google Scholar 

  19. R. Ganguly, I.K. Gopalakrishnan, J.V. Yakhmi, Magnetic and electrical properties of La06.7Ca0.33MnO3 as influenced by substitution of Cr. Phys. B 275, 308 (2000)

    Article  ADS  Google Scholar 

  20. P. Dey, T.K. Nath, (2006) Effect of grain size modulation on the magneto-and electronic-transport properties of La0.7Ca0.3MnO3 nanoparticles: The role of spin-polarized tunneling at the enhanced grain surface., Phys. Rev. B. 73 214425.

  21. P.N. Lisboa-Filho, A.W. Mombru, H. Pardo, E.R. Leite, W.A. Ortiz, Extrinsic properties of colossal magnetoresistive samples. Solid State Commun. 130, 31 (2004)

    Article  ADS  Google Scholar 

  22. R. Sakka, M’nassri, N. Chniba Boudjada, M. Ommezzine, A. Cheikhrouhou, , Effect of trivalent rare earth doping on magnetic and magnetocaloric properties of Pr05(Ce, Eu, Y)01Sr04MnO3 manganites. J. Appl. Phys A. 122, 1 (2016)

    Article  Google Scholar 

  23. H. Ben Khlifa, R. M’nassri, W. Cheikhrouhou, E.K. Koubaa, A. CheikhrouhouHlil, Effects of synthesis rsoute on the structural, magnetic and magnetocaloric properties of Pr0.8K0.2MnO3. Ceram. Int. 43, 1853–1861 (2017)

    Article  Google Scholar 

  24. H. Ben Khlifa, S. Othmani, I. Chaaba, S. Tarhouni, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, (2016)., J. AlloysCompd. 680 388.

  25. C. Dutta, T.P. S Bharti, Dielectric relaxation in Sr(Mg1/3Nb2/3)O3. Phys. B 403, 3389 (2008)

    Article  ADS  Google Scholar 

  26. S.N. Mishra, K. Choudhary, R.N.P. Prasad Choudhary , Complex impedance spectroscopic studies of Ba(Pr1/2Ta1/2)O3 ceramic. Phys. B 406, 3279 (2011)

    Article  ADS  Google Scholar 

  27. X.B. Yang, Y.H. Liu, N. Yin, C.J. Wang, L.M. Mei, Effects of Ag addition on electrical transport and magnetic properties of La0.67Ba0.33Mn0.88Cr012O3. J. Magn. Magn. Mater. 306, 167 (2006)

    Article  ADS  Google Scholar 

  28. N. Panwar, D.K. Pandya, S.K. Agarawal, Magneto-transport and magnetization studies of Pr2/3Ba1/3MnO3: Ag2O composite manganites. J. Phys. Condens. Mater. 19, 456224 (2007)

    Article  ADS  Google Scholar 

  29. S.A. Mazen, A.M. El Taher, The conduction mechanism of Cu–Ge ferrite. Solid State Comm. 150, 1719 (2010)

    Article  ADS  Google Scholar 

  30. H. Chouaya, M. Smari, I. Walha, E. Dhahri, M.P.F. Graça, M.A. Valente, The effect of bismuth on the structure, magnetic and electric properties of Co2MnO4 spinel multiferroic. J. Magn. Magn. Mater. 451, 344 (2018)

    Article  ADS  Google Scholar 

  31. R.N. Bhowmik, G. Vijayasri, Study of microstructure and semiconductor to metallic conductivity transition in solid state sintered Li0.5Mn0.5Fe2O4−δ spinel ferrite. J. Appl. Phys. 114, 223701 (2013)

    Article  ADS  Google Scholar 

  32. B.J. Kharrat, S. Moussa, N. Moutiaa, K. Khirouni, W. Boujelben, Structural, electrical and dielectric properties of Bi-doped Pr0.8-xBixSr0.2MnO3 manganite oxides prepared by sol-gel process. J. Alloys. Compd. 724, 389 (2017)

    Article  Google Scholar 

  33. A.K. Jonscher, The “universal” dielectric response. Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  34. A.M. Abo El Ata, M.K. El Nimr, S.M. Attia, D. El Kony, A.H. Al-Hammadi, Studies of AC electrical conductivity and initial magnetic permeability of rare-earth-substituted Li–Co ferrites. J. Magn. Magn. Mater. 297, 33 (2006)

    Article  ADS  Google Scholar 

  35. N.F. Mott, E.A. Davis, Electron Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  36. X. Zhang, D. Wang, J. Kang, L. Lei, X. Li, J. Lu, Zhu, Dielectric relaxation in Tb0. 5Y0. 5MnO3 ceramics. Mater Lett. 132, 331 (2014)

    Article  Google Scholar 

  37. N, Singh, A, Agarwal, S, Sanghi, , Dielectric relaxation, conductivity behavior and magnetic properties of Mg substituted Zn–Li ferrites, Curr. Appl. Phys. 11, 783 (2011)

    ADS  Google Scholar 

  38. K. Kumari, K. Prasad, R.N.P. , Choudhary, Impedance spectroscopy of (Na0.5Bi05)(Zr0.25Ti0 75) O3 lead-free ceramic. J. Alloy. Compd. 453, 325 (2008)

    Article  Google Scholar 

  39. S.R. Elliot, A theory of ac conduction in chalcogenide glasses. Philos. Mag. 36, 1291 (1977)

    Article  ADS  Google Scholar 

  40. S.R. Elliot, (1978) Temperature dependence of a.c. conductivity of chalcogenide glasses, Philos. Mag. B 37 553.

  41. A.R. Long, Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 31, 553 (1982)

    Article  ADS  Google Scholar 

  42. S. Sen, S.K. Mishra, S.K. Das, A. , Tarafdar, Impedance analysis of 065Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 ceramic. J. Alloy. Compd. 453, 395 (2008)

    Article  Google Scholar 

  43. J.H. Joshi, D.K. Kanchan, M.J. Joshi, H.O. Jethva, K.D. Parikh, Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater. Res. Bull. 93, 63 (2017)

    Article  Google Scholar 

  44. M. Benali, E. Bejar, M.F.P. Dhahri, L.C.C. Graça, Electrical conductivity and ac dielectric properties of La0.8Ca0.2-Pb FeO3 (x= 005, 010 and 015) perovskite compounds. J. Alloys Compd. 653, 506 (2015)

    Article  Google Scholar 

  45. M. Omri, E. Bejar, M. Dhahri, M.A. Es-Souni, M.P.F. Valente, L.C. Costa Graça, Electrical conductivity and dielectric analysis of La0.75(CaSr)0.25Mn085Ga0.15O3 perovskite compound. J. Alloys Compd. 536, 173 (2012)

    Article  Google Scholar 

  46. P. Debye, Polar Molecules (Chemical Catalogue Company, New York, 1929)

    MATH  Google Scholar 

  47. T. Larbi, B. Ouni, A. Boukhachem, K. Boubaker, M. Amlouk, Investigation of structural, optical, electrical and dielectric properties of catalytic sprayed hausmannite thin film. Mater. Res. Bull. 60, 457 (2014)

    Article  Google Scholar 

  48. M. Shah, M. Nadeem, M. Idrees, M. Atif, M.J. Akhtar, Change of conduction mechanism in the impedance of grain boundaries in Pr0.4Ca0.6MnO3. J. Mag. M. Mater. 332, 61–66 (2013)

    Article  ADS  Google Scholar 

  49. P. Córdoba-Torres, T.J. Mesquita, O. Devos, B. Tribollet, V. Roche, R.P. Nogueira, On the intrinsic coupling between constant-phase element parameters α and Q in electrochemical impedance spectroscopy. J. Electrochim. Acta. 72, 172 (2012)

    Article  Google Scholar 

  50. M.E. Hirschorn, B. Orazema, V. Tribollet, I. Vivier, M. Frateur, Musiani, Determination of effective capacitance and film thickness from constant-phase-element parameters. J. Electrochim. Acta. 55, 6218 (2010)

    Article  Google Scholar 

  51. P. Zoltowski, On the electrical capacitance of interfaces exhibiting constant phase element behaviour. J. Electroanal. Chem. 443, 149 (1998)

    Article  Google Scholar 

  52. Z. Stoynov, D. Vladikova, Marin Drinov Academic Publishing House. (2005).

  53. M. Nadeem, M.J. Akhtar, A.Y. Khan, Effects of low frequency near metal-insulator transition temperatures on polycrystalline La0.65Ca0.35Mn1−yFeyO3 (where y=005–010) ceramic oxides. Solid State Comm. 134, 431 (2005)

    Article  ADS  Google Scholar 

  54. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5−xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 02). J. Dalton Trans. 44, 10457 (2015)

    Article  Google Scholar 

  55. T. Kar, R.N.P. Chaudhary, Structural, dielectric and electrical conducting properties of CsB′B′′O6 (B′=Nb, Ta; B′′=W, Mo) ceramics. Mater. Sci. Eng. B. 90, 224 (2002)

    Article  Google Scholar 

  56. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev 6, 108 (1997)

    Google Scholar 

  57. N.V. Prasad, G. Prasad, T. Bhimasankaran, S.V. Suryanarayana, G.S. Kumar, Dielectric properties of cobalt doped cadmium oxalate crystals. Bull. Mater. Sci. 19, 639 (1996)

    Article  Google Scholar 

  58. P.V. Reddy, T.S. Rao, Dielectric behaviour of mixed Li-Ni ferrites at low fre-quencies. J. Less Common. Met. 86, 255 (1982)

    Article  Google Scholar 

  59. Su. Jun, J. Zhang, Remarkable enhancement of mechanical and dielectric properties of flexible ethylene propylene diene monomer (EPDM)/ barium titanate (BaTiO3) dielectric elastomer by chemical modification of particles. RSC Adv. 5, 78448 (2015)

    Article  ADS  Google Scholar 

  60. R. Hamdi, A. Tozri, M. Smari, E. Dhahri, L. Bessais, Structural, magnetic, magnetocaloric and electrical studies of Dy05(Sr1−xCax)05MnO3 manganites. J. Magn. Magn. Mater. 444, 270 (2017)

    Article  ADS  Google Scholar 

  61. C. Kim, M.J. Lee, S.E. Ahn, S. Seo, J.C. Park, I.K. Yoo, Improvement of resistive memory switching in NiO using IrO2. J. Appl. Phys Lett. 88, 232106 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study is supported by the Tunisian Ministry of Higher Education and Prince Sultan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M’nassri.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouni, ., Ben Khlifa, H., M’nassri, R. et al. Transport properties and dielectric response of Pr0.8Na0.2-xKxMnO3 (x = 0, 0.05, 0.1, 0.15 and 0.2) ceramics synthesized by sol–gel method. Appl. Phys. A 127, 631 (2021). https://doi.org/10.1007/s00339-021-04760-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04760-x

Keywords

Navigation