Skip to main content
Log in

Improved CZTSSe thin-film morphology and device performance by using DMSO/DMF blended solvent

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Solvent engineering is an important route for improving the quality of solution-processed copper-zinc-tin-sulfur-selenium (CZTSSe) thin films. Here, blended solvents composed of dimethyl sulfoxide (DMSO) and dimethyl formamide (DMF) were used to prepare CZTSSe precursor solution. The addition of DMF improved the wettability of precursor solution on Mo-coated substrates and modified the CZTSSe formation. Impacts of different DMF contents in solvents on morphological, structural, optical and photovoltaic properties of CZTSSe films were fully studied. Compared with the pure DMSO-based precursor solution, incorporation of an appropriate amount of DMF into DMSO can effectively increase the grain size and improve the film compactness, while adding excess DFM decreased the crystallinity and deteriorated the device performance. By optimizing DMF content, the carrier lifetime of CZTSSe thin film was increased from 2.78 ns to 5.07 ns and the energy conversion efficiencies of solar cells were improved from 4.77% to 6.03%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Kategori, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Sol. Energy Mater. Sol. Cell 49, 407 (1997)

    Article  Google Scholar 

  2. D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, Sol. Energy Mater. Sol. Cells 95, 1421 (2011)

    Article  Google Scholar 

  3. A. Walsh, S. Chen, S.H. Wei, X.G. Gong, Adv. Energy Mater. 2, 400 (2012)

    Article  Google Scholar 

  4. S.K. Wallace, D.B. Mitzi, A. Walsh, ACS Energy Lett. 2, 776 (2017)

    Article  Google Scholar 

  5. D.A.R. Barkhouse, O. Gunawan, T. Gokmen, T.K. Todorov, D.B. Mitzi, Prog. Photovolt. Res. Appl. 20, 6 (2012)

    Article  Google Scholar 

  6. S. Giraldo, Z. Jehl, M. Placidi, V. Izquierdo-Roca, A. Perez-Rodriguez, E. Saucedo, Adv. Mater. (2019). https://doi.org/10.1002/adma.201806692

    Article  Google Scholar 

  7. Y.E. Romanyuk, C.M. Fella, A.R. Uhl, M. Werner, A.N. Tiwari, T. Schnabel, E. Ahlswede, Sol. Energy Mater. Sol. Cells 119, 181 (2013)

    Article  Google Scholar 

  8. K. Pal, P. Singh, A. Bhaduri, K.B. Thapa, Sol. Energy Mater. Sol. Cells 196, 138 (2019)

    Article  Google Scholar 

  9. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Engery Mater. (2014). https://doi.org/10.1002/aenm.201301465

    Article  Google Scholar 

  10. K. Wooseok, H.W. Hillhouse, Adv. Energy Mater. 1, 732 (2011)

    Article  Google Scholar 

  11. H. Xin, J.K. Katahara, L.L. Braly, H.W. Hillhouse, Adv. Energy Mater. (2014). https://doi.org/10.1002/aenm.201301823

    Article  Google Scholar 

  12. S.G. Haass, M. Diethelm, M. Werner, B. Bissig, Y.E. Romanyuk, A.N. Tiwar, Adv. Energy Mater. (2015). https://doi.org/10.1002/aenm.201500712

    Article  Google Scholar 

  13. H. Xin, S. Vorpahl, A. Collord, I. Braly, A. Uhl, B. Krueger, D. Ginger, H. Hillhouse, Phys. Chem. Chem. Phys. 17, 23859 (2015)

    Article  Google Scholar 

  14. Y. Zhaoa, X. Han, L. Chang, J. Li, C. Dong, Y. Fang, J. Li, Sol. Energy Mater. Sol. Cells 179, 427 (2018)

    Article  Google Scholar 

  15. T. Schnabel, M. Löw, E. Ahlswede, Sol. Energy Mater. Sol. Cells 117, 324 (2013)

    Article  Google Scholar 

  16. F. Aslan, A. Göktaş, A. Tumbul, Mater. Sci. Semicond. Process. 43, 139 (2016)

    Article  Google Scholar 

  17. F.Y. Liu, S.S. Shen, F.Z. Zhou, N. Song, X.M. Wen, J.A. Stride, K.W. Sun, C. Yan, X.J. Hao, J. Mater. Chem. C 3, 10783 (2015)

    Article  Google Scholar 

  18. H.C. Zai, D.L. Zhang, L. Li, C. Zhu, S. Ma, Y.Z. Zhao, Z.G. Zhao, C.F. Chen, H.P. Zhou, Y.J. Li, Q. Chen, J. Mater. Chem. A 6, 23602 (2018)

    Article  Google Scholar 

  19. G. Grinciene, M. Franckevicius, R. Kondrotas, R. Giraitis, R. Juskenas, G. Niaura, A. Naujokaitis, J. Juodkazyte, L. Tamassauskaite-Tamasiunaite, V. Pakstas, Semicond. Sci. Technol. (2018). https://doi.org/10.1088/1361-6641/aad5d0

    Article  Google Scholar 

  20. R. Saravana Kumar, C.-H. Hong, M.-D. Kim, Adv. Powder Technol. 25, 1554 (2014)

    Article  Google Scholar 

  21. S.J. Ge, H. Gao, R.J. Hong, J.J. Li, Y.H. Mai, X.Z. Lin, G.W. Yang, Chemsuschem 12, 1692 (2019)

    Article  Google Scholar 

  22. Y.C. Gong, Y.F. Zhang, Q. Zhu, Y.G. Zhou, R.C. Qiu, C.Y. Niu, W.B. Yan, W. Huang, H. Xin, Energy Environ. Sci. (2021). https://doi.org/10.1039/D0EE03702H

    Article  Google Scholar 

  23. F. Martinho, S. Lopez-Marino, M. Espindola-Rodriguez, A. Hajijafarassar, F. Stulen, S. Grini, M. Dobeli, M. Gansukh, S. Engberg, E. Stamate, L. Vines, J. Schou, O. Hansen, S. Canulescu, A.C.S. Appl, Mater. Interfaces 12, 39405 (2020)

    Article  Google Scholar 

  24. J.A. Clark, A.R. Uhl, T.R. Martin, H.W. Hillhouse, Chem. Mater. 29, 9328 (2017)

    Article  Google Scholar 

  25. Z. Tang, S. Tanaka, S. Ito, S. Ikeda, K. Taguchi, T. Minemoto, Nano Energy 21, 51 (2016)

    Article  Google Scholar 

  26. Y.C. Gong, Y.F. Zhang, E. Jedlicka, R. Giridharagopal, J.A. Clark, W.B. Yan, C.Y. Niu, R.C. Qiu, J.J. Jiang, S.T. Yu, S.P. Wu, H.W. Hillhouse, D.S. Ginger, W. Huang, H. Xin, Sci. China Mater. 64, 52 (2021)

    Article  Google Scholar 

  27. X.Z. Lin, J. Kavalakkatt, M.C. Lux-Steiner, A. Ennaoui, Adv. Sci. 2, 1500028 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangxi Province (Grant No. 20192ACB20006), the National Natural Science Foundation of China (Grant No. 62064005), the Double Thousand Plan of Jiangxi Province (Grant No. jxsq2018101019), and the Innovative Talents Program of Ganzhou.

Funding

Natural Science Foundation of Jiangxi Province (Grant No. 20192ACB20006), National Natural Science Foundation of China (Grant No. 62064005), Double Thousand Plan of Jiangxi Province (Grant No. jxsq2018101019), Innovative Talents Program of Ganzhou.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohui Tan or Xiuxun Han.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Consent for publication

The authors give consent for publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Tan, X., Zhao, W. et al. Improved CZTSSe thin-film morphology and device performance by using DMSO/DMF blended solvent. Appl. Phys. A 127, 603 (2021). https://doi.org/10.1007/s00339-021-04753-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04753-w

Keywords

Navigation