Skip to main content
Log in

Modeling the effect of pre-straining on mechanical behavior of magnesium alloy sheet

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Experimental observations indicate that pre-deformation can influence the mechanical properties of magnesium alloys. However, inconsistent or even contradictory conclusions have been drawn mainly due to the difficulty of isolating an individual influencing factor from those playing interactive roles in an experiment. Therefore, a systematical study in terms of crystal plasticity modeling is performed to evaluate the effect of pre-deformation (pre-rolling and pre-compression) in the current work. The subsequent tensile response of the magnesium alloy AZ31B sheet along the transverse direction and the rolling direction after pre-deformation is simulated. It is found that both pre-rolling and pre-compression can either enhance or deteriorate the mechanical properties of the AZ31B sheet. If annealing is applied, the pre-deformed microstructure is retained and the mechanical properties are generally enhanced. Pre-compression with ~ 3% strain and annealing are able to enhance the overall mechanical properties of a rolled Mg alloy sheet the most. Based on the modeling results, the properties of magnesium alloys can be affected differently with different pre-straining paths, different loading directions, with annealing or without. These findings help us understand the inconsistency in different experimental studies and also reveal the role of pre-deformation and the accompanying influencing factors on the properties of magnesium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The raw data required to reproduce these findings are available on reasonable request addressed to the corresponding author.

References

  1. M.R. Barnett, Mater. Sci. Eng. A 464, 1–7 (2007)

    Article  Google Scholar 

  2. T.M. Pollock, Sci. 328, 986–987 (2010)

    Article  Google Scholar 

  3. T.T.T. Trang, J.H. Zhang, J.H. Kim, A. Zargaran, J.H. Hwang, B.C. Suh, N.J. Kim, Nature Com. 9, 2522 (2018)

    Article  Google Scholar 

  4. Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes, W.A. Curtin, Sci. 359, 447–452 (2018)

    Article  ADS  Google Scholar 

  5. S.R. Agnew, O. Duygulu, Int. J. Plast. 21, 1161–1193 (2005)

    Article  Google Scholar 

  6. X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, R.H. Wagoner, Int. J. Plast. 23, 44–86 (2007)

    Article  Google Scholar 

  7. A. Chapuis, J.H. Drivers, Acta Mater. 59, 1986–1994 (2011)

    Article  ADS  Google Scholar 

  8. L. Wu, A. Jain, D.W. Brown, G.M. Stoica, S.R. Agnew, B. Clausen, D.E. Fielden, P.K. Liaw, Acta Mater. 56, 688–695 (2008)

    Article  ADS  Google Scholar 

  9. H. Wang, Y. Wu, P.D. Wu, K.W. Neale, CMC-Comp. Mater. Contin. 19, 255–284 (2010)

    Google Scholar 

  10. H. Wang, B. Raeisinia, P.D. Wu, S.R. Agnew, C.N. Tomé, Int. J. Solids Struc. 47, 2905–2917 (2010)

    Article  Google Scholar 

  11. H. Wang, P.D. Wu, C.N. Tomé, J. Wang, Mater. Sci. Eng. A 555, 93–98 (2012)

    Article  Google Scholar 

  12. H. Wang, B. Clausen, L. Capolungo, I.J. Beyerlein, J. Wang, C.N. Tomé, Int. J. Plast. 79, 275–292 (2016)

    Article  Google Scholar 

  13. H. Wang, S.Y, Lee, M.A. Gharghouri, P.D. Wu (2016). Acta Mater. 107, 404–414.

  14. M. Teschke, A. Koch, F. Walther, Mater. 13, 3 (2020)

    Google Scholar 

  15. F. Akbaripanah, F. Fereshteh-Saniee, R. Mahmudi, H.K. Kim, Mater. Des. 43, 31–39 (2013)

    Article  Google Scholar 

  16. X.S. Huang, K. Suzuki, A. Watazu, I. Shigematsu, N. Saito, Mater. Sci. Eng. A 488, 214–220 (2018)

    Article  Google Scholar 

  17. Y. Chino, K. Sassa, M. Mabuchi, Scripta Mater. 59, 399–402 (2008)

    Article  Google Scholar 

  18. H. Wang, P.D. Wu, S.Y. Lee, J. Wang, K.W. Neale, Int. J. Mech. Sci. 92, 70–79 (2015)

    Article  Google Scholar 

  19. K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, D. Letzig, Scr. Mater. 63, 725–730 (2010)

    Article  Google Scholar 

  20. R. Ahmad, B.L. Yin, Z.X. Wu, W.A. Curtin, Acta Mater. 172, 161–184 (2019)

    Article  ADS  Google Scholar 

  21. R. Ahmad, Z.X. Wu, W.A. Curtin, Acta Mater. 183, 228–241 (2020)

    Article  ADS  Google Scholar 

  22. B. Song, N. Guo, T.T. Liu, Q.S. Yang, Mater. Des. 63, 352–360 (2014)

    Article  Google Scholar 

  23. Y. Xin, M. Wang, Z. Zeng, M. Nie, Q. Liu, Scr. Mate. 66, 25–28 (2012)

    Article  Google Scholar 

  24. Q. Yang, B. Jiang, L. Wang, J. Dai, J. Zhang, F. Pan, J. Alloys Compoun. 84, 152278 (2020)

    Article  Google Scholar 

  25. Z. Trojanova, A. Rudajevova, O. Padalka, M. Janecek, P. Lukac, Kovove Materialy-Metallic Mater. 44, 283–289 (2006)

    Google Scholar 

  26. P. Dobron, D. Drozdenko, J. Bohlen, S. Yi, D. Letzig, F. Chmelik, Acta Phys. Pol., A 128(4), 790–794 (2015)

    Article  ADS  Google Scholar 

  27. D. Drozdenko, J. Bohlen, K. Horvath, S.B. Yi, D. Letzig, F. Chmelik, P. Dobron, Adv. Eng. Mater. 21(3), 1800915 (2019)

    Article  Google Scholar 

  28. L.F. Wang, Z.Y. Zhang, M. Cao, H. Zhang, T.Z. Han, Q.S. Yang, H.X. Wang, W.L. Cheng, Mater. Res. Exp. 6, 086595 (2019)

    Article  Google Scholar 

  29. S.H. Park, S.G. Hong, C.S. Lee, Mater. Sci. Eng. A 570, 149–163 (2013)

    Article  Google Scholar 

  30. P. Van houtte (1978). Acta Mater. 26, 591–604.

  31. R.A. Lebensohn, C.N. Tomé, Acta Metall. Mater. 41, 2611–2624 (1993)

    Article  Google Scholar 

  32. C.N. Tomé, R.A. Lebensohn, U.F. Kocks, Acta Metall. Mater. 39, 2667–2680 (1991)

    Article  Google Scholar 

  33. S.R. Kalidindi, J. Mech. Phy. Solids 46, 267–290 (1998)

    Article  ADS  Google Scholar 

  34. G. Proust, C.N. Tomé, G.C. Kaschner, Acta Mater. 55, 2137–2148 (2007)

    Article  ADS  Google Scholar 

  35. H. Wang, P.D. Wu, J. Wang, C.N. Tomé, Int. J. Plast. 49, 36–52 (2013)

    Article  Google Scholar 

  36. H. Wang, S. Li, D. Li, G. Proust, Y. Gan, K. Yan, D. Tang, P. Wu, Y. Peng, MRS Bull. 44, 873–877 (2019)

    Article  ADS  Google Scholar 

  37. H. Wang, P.D. Wu, C.N. Tomé, Y. Huang, J. Mech. Phy. Solids 58, 594–612 (2010)

    Article  ADS  Google Scholar 

  38. H. Qiao, P.D. Wu, H. Wang, M.A. Gharghouri, M.R. Daymond, Int. J. Solids Struc. 71, 308–322 (2015)

    Article  Google Scholar 

  39. H. Wang, P.D. Wu, S. Kurukuri, M.J. Worswick, Y.H. Peng, D. Tang, D.Y. Li, Int. J. Plast. 107, 207–222 (2018)

    Article  Google Scholar 

  40. C. Ma, H. Wang, T. Hama, X.Q. Guo, X.B. Mao, J. Wang, P.D. Wu, Int. J. Plast. 121, 261–279 (2019)

    Article  Google Scholar 

  41. P.D. Wu, H. Wang, K.W. Neale, Int. J. App. Mech. 4, 1250024 (2012)

    Article  Google Scholar 

  42. X.Q. Guo, W. Wu, P.D. Wu, H. Qiao, K. An, P.K. Liaw, Scr. Mater. 69, 319–322 (2013)

    Article  Google Scholar 

  43. X.D. Zhang, S.M. Li, X.Q. Guo, H. Wang, Q. Y, P.D. Wu, Int. J. Mech. Sci. 191, 106062 (2021)

    Article  Google Scholar 

  44. H. Wang, P.D. Wu, J. Wang, Comput. Mater. Sci. 96, 214–218 (2015)

    Article  Google Scholar 

  45. H. Wang, P.D. Wu, J. Wang, Metall. Mater. Trans. 46, 3079–3090 (2015)

    Article  Google Scholar 

  46. H. Qiao, S.R. Agnew, P.D. Wu, Int. J. Plast. 65, 61–84 (2015)

    Article  Google Scholar 

  47. H. Qiao, X.Q. Guo, S.G. Song, P.D. Wu, J. Alloys Compoun. 725, 96–107 (2017)

    Article  Google Scholar 

  48. H. Wang, S.Y. Lee, E.W. Huang, J. Jain, D.Y. Li, Y.H. Peng, H.S. Choi, P.D. Wu, J. Mech. Phy. Solids. 135, 103795 (2020)

    Article  Google Scholar 

  49. G Simmons H Wang 1971 MIT Press Cambridge

  50. Y. Bao, R. Treitler, Mater. Sci. Eng. A 384, 385–394 (2004)

    Article  Google Scholar 

  51. B.Y. Liu, J. Wang, B. Li, L. Lu, X.Y. Zhang, Z.W. Shan, J. Li, C.L. Jia, J. Sun, E. Ma, Nature Commu. 5, 3297 (2014)

    Article  ADS  Google Scholar 

  52. J. Maki, J. Mater. Sci. Letters 5, 1119–1121 (1986)

    Article  Google Scholar 

  53. G.I. Taylor, Plastic strain in metals. J. Instit. Metal. 62, 307–324 (1938)

    Google Scholar 

Download references

Acknowledgements

HW was supported by the National Natural Science Foundation of China (Nos. 51975365 and 52011540403), the Shanghai Pujiang Program (18PJ1405000) and the Research Project of State Key Laboratory of Mechanical System and Vibration (MSVZD201911).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huamiao Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Zhang, X., Qiao, H. et al. Modeling the effect of pre-straining on mechanical behavior of magnesium alloy sheet. Appl. Phys. A 127, 615 (2021). https://doi.org/10.1007/s00339-021-04732-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04732-1

Keywords

Navigation