Skip to main content
Log in

Physical and magnetic properties for two types of connectivity of NiFe2O4/PbZr0.52Ti0.48O3 (NFO/PZT) composite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this article, we report on the synthesis as well as structure, microstructure, and magnetic properties of nanocomposites NiFe2O4/PbZr0.52Ti0.48O3 (NFO/PZT) with weight ratio (40%(NFO):60%(PZT)). They are synthesized in two types of connectivity (0–0) and (0–3) connectivity by standard mixing and modified two-step sol–gel techniques, respectively. Single-phase NFO and PZT are also prepared by sol–gel and hydrothermal techniques, respectively. This study aims to merely understand the effect of different connectivity on the composite properties. X-ray and electron diffraction results confirm the presence of tetragonal and cubic phases for PZT and NFO, respectively, in (0–0) and (0–3) 0.4NFO/0.6PZT nanocomposites. The size-strain analysis results showed that (0–3) 0.4NFO/0.6PZT has a higher microstrain than (0–0) 0.4NFO/0.6PZT. The microstructural and morphological properties were recognized by high-resolution transmission electron microscope. The spectrums of Fourier transform infrared spectroscopy and magnetic properties are affected by the difference in the connectivity. The saturation magnetization Ms of (0–3) 0.4NFO/0.6PZT is higher than (0–0) 0.4NFO/0.6PZT, while the coercive field Hc of (0–3) 0.4NFO/0.6PZT is lower than (0–0) 0.4NFO/0.6PZT due to the lower value of porosity. Also, the relative initial permeability of (0–3) 0.4NFO/0.6PZT is higher than the (0–0) 0.4NFO/0.6PZT, and the Curie temperatures of both nanocomposites are significantly increased relative to the single-phase NFO. In general, the (0–3) connectivity shows remarkable physical and magnetic properties over the (0–0) connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Lottermoser, D. Meier, Phys. Sci. Rev. 6, 2 (2020). https://doi.org/10.1515/psr-2020-0032

    Article  Google Scholar 

  2. M. Yu, J. Hu, J. Liu, S. Li, J. Magn. Magn. Mater. 326, 31 (2013)

    Article  ADS  Google Scholar 

  3. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Nature 429, 392 (2004)

    Article  ADS  Google Scholar 

  4. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)

    Article  Google Scholar 

  5. R.E. Newnham, D.P. Skinner, L.E. Cross, Mater. Res. Bull. 13, 525 (1978)

    Article  Google Scholar 

  6. K. UCHINO, Advanced Piezoelectric Materials Woodhead Publishing Limited, Abington Hall, Granta Park, Great Abington, Cambridge CB21 6AH, UK (2010)

  7. M.I. Bichurin, Magnetoelectric Composites, 1st edn. (Jenny Stanford Publishing, 2019)

  8. A.A. Bukharaev, A.K. Zvezdin, A.P. Pyatakov, Y.K. Fetisov, Uspekhi Fiz. Nauk 188, 1288 (2018)

    Article  Google Scholar 

  9. M.M. Vijatović-Petrović, A. Džunuzović, J.D. Bobić, N. Ilić, I. Stijepović, B.D. Stojanović, Process. Appl. Ceram. 14, 9 (2020)

    Article  Google Scholar 

  10. J. Zhang, W. Zhu, D. Chen, H. Qu, P. Zhou, M. Popov, L. Jiang, L. Cao, G. Srinivasan, J. Magn. Magn. Mater. 473, 131 (2019)

    Article  ADS  Google Scholar 

  11. N. Barrett, I. Gueye, G. Le Rhun, O. Renault, E. Defay, Thin Solid Films 715, 138423 (2020)

    Article  ADS  Google Scholar 

  12. M. Atif, S. Ahmed, M. Nadeem, M.N. Khan, J. Alloys Compd. 735, 880 (2018)

    Article  Google Scholar 

  13. J.H. Peng, M. Hojamberdiev, H.Q. Li, D.L. Mao, Y.J. Zhao, P. Liu, J.P. Zhou, G.Q. Zhu, J. Magn. Magn. Mater. 378, 298 (2015)

    Article  ADS  Google Scholar 

  14. M.A. Ashmawy, A.A. Sattar, H.M. El-Sayed, J. Phys. Conf. Ser. 1253, 1 (2019). https://doi.org/10.1088/1742-6596/1253/1/012017

    Google Scholar 

  15. R. Pandey, B.R. Meena, A.K. Singh, J. Alloys Compd. 593, 224 (2014)

    Article  Google Scholar 

  16. X. Yao, Y. Yang, J.-P. Zhou, X.-M. Chen, P.-F. Liang, C. You, J. Phys. D. Appl. Phys. 51, 55002 (2018)

    Article  Google Scholar 

  17. X. Yao, Y. Yang, X.-L. Zhang, Q. Liu, J.-P. Zhou, X.-M. Chen, G.-B. Zhang, J. Magn. Magn. Mater. 501, 166410 (2020)

    Article  Google Scholar 

  18. J.-L. Chen, Z. Xu, S.-B. Qu, X.-Y. Wei, X.-H. Liu, Ceram. Int. 34, 803 (2008)

    Article  Google Scholar 

  19. T. Cheng, L.F. Xu, P.B. Qi, C.P. Yang, R.L. Wang, H.B. Xiao, J. Alloys Compd. 602, 269 (2014)

    Article  Google Scholar 

  20. C. Elena, M. Airimioaei, V. Nica, L.M. Hrib, O.F. Caltun, A.R. Iordan, C. Galassi, L. Mitoseriu, M. N. Palamaru 32, 3325 (2012)

    Google Scholar 

  21. M. Zeng, J.G. Wan, Y. Wang, H. Yu, J.M. Liu, X.P. Jiang, C.W. Nan, J. Appl. Phys. 95, 8069 (2004)

    Article  ADS  Google Scholar 

  22. V.M. Laletin, N.N. Poddubnaya, Tech. Phys. Lett. 43, 114 (2017)

    Article  ADS  Google Scholar 

  23. R.A. Islam, V. Bedekar, N. Poudyal, J.P. Liu, S. Priya, J. Appl. Phys. 104, 8 (2008)

    Google Scholar 

  24. D. Wu, W. Gong, H. Deng, M. Li, J. Phys. D. Appl. Phys. 40, 5002 (2007)

    Article  ADS  Google Scholar 

  25. W.R. Agami, M.A. Ashmawy, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020)

    Article  Google Scholar 

  26. R.M. Piticescu, R.R. Piticescu, D. Taloi, V. Badilita, Nanotechnology 14, 312 (2003)

    Article  ADS  Google Scholar 

  27. B. Su, T.W. Button, C. B. Ponton 9, 6439 (2004)

    Google Scholar 

  28. G. Xu, W. Jiang, M. Qian, X. Chen, Z. Li, G. Han, Cryst. Growth Des. 9, 13 (2009)

    Article  Google Scholar 

  29. V. Corral-Flores, D. Bueno-Baqués, R.F. Ziolo, Acta Mater. 58, 764 (2010)

    Article  ADS  Google Scholar 

  30. J.B. Nelson, D.P. Riley, Proc. Phys. Soc. 57, 160 (1945)

    Article  ADS  Google Scholar 

  31. Dipti, J.K. Juneja, S. Singh, K.K. Raina, R.K. Kotnala, C. Prakash, Ferroelectr. Lett. Sect. 42, 97 (2015). https://doi.org/10.1080/07315171.2015.1026201

    Article  Google Scholar 

  32. S.N. Kallaev, G.G. Gadzhiev, I.K. Kamilov, Z.M. Omarov, S.A. Sadykov, L.A. Reznichenko, Phys. Solid State 48, 1169 (2006)

    Article  ADS  Google Scholar 

  33. W.R. Agami, M.A. Ashmawy, A.A. Sattar, J. Mater. Eng. Perform. 23, 604 (2014)

    Article  Google Scholar 

  34. C.P. Fernández, F.L. Zabotto, D. Garcia, R.H.G.A. Kiminami, Ceram. Int. 42, 3239 (2016)

    Article  Google Scholar 

  35. E.B. Araújo, C.A. Guarany, K. Yukimitu, J.C.S. Moraes, J.A. Eiras, Ferroelectrics 337, 145 (2006)

    Article  Google Scholar 

  36. J.T. Last, Phys. Rev. 105, 1740 (1957)

    Article  ADS  Google Scholar 

  37. B. Himmetoglu, A. Janotti, H. Peelaers, A. Alkauskas, C.G. Van De Walle, Phys. Rev. B Condens. Matter Mater. Phys. 90, 1 (2014)

    Google Scholar 

  38. S. Sahoo, M.S. Hu, C.W. Hsu, C.T. Wu, K.H. Chen, S. Sahoo, M.S. Hu, C.W. Hsu, C.T. Wu, K.H. Chen, L.C. Chen, A.K. Arora, S. Dhara, Appl. Phys. Lett 93, 233116 (2008)

    Article  ADS  Google Scholar 

  39. R.D. Waldron, Phys. Rev. 99, 1727 (1955)

    Article  ADS  Google Scholar 

  40. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, Wiley (2011).

  41. V. Šepelák, I. Bergmann, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F.J. Litterst, S.J. Campbell, K.D. Becker, J. Phys. Chem. C 111, 5026 (2007)

    Article  Google Scholar 

  42. J. Smit and H. P. J. Wijn, Ferrites (N. V. Philips (Holland), 1959).

  43. W.H. Gong, M. Li, Z. Shi, H.J. Deng, C.W. Nan, Key Eng. Mater. 336–338, 238 (2007)

    Article  Google Scholar 

  44. Z.P. Niu, Y. Wang, F.S. Li, J. Mater. Sci. 41, 5726 (2006)

    Article  ADS  Google Scholar 

  45. G. Srinivasan, R. Hayes, C.P. DeVreugd, V.M. Laletsin, N. Paddubnaya, Appl. Phys. A 80, 891 (2003)

    Article  ADS  Google Scholar 

  46. O.M. Hemeda, A. Tawfik, A. Al-Sharif, M.A. Amer, B.M. Kamal, D.E. El Refaay, M. Bououdina, J. Magn. Magn. Mater. 324, 4118 (2012)

    Article  ADS  Google Scholar 

  47. J.-P. Zhou, L. Lv, Q. Liu, Y.-X. Zhang, P. Liu, Sci. Technol. Adv. Mater. 13, 045001 (2012)

    Article  Google Scholar 

Download references

Funding

This work was not funded by any institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ashmawy.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashmawy, M.A., Sattar, A.A. & El-Sayed, H.M. Physical and magnetic properties for two types of connectivity of NiFe2O4/PbZr0.52Ti0.48O3 (NFO/PZT) composite. Appl. Phys. A 127, 566 (2021). https://doi.org/10.1007/s00339-021-04711-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04711-6

Keywords

Navigation