Abstract
Magneto-plasmonic nanoparticles have gained increasing interest, especially for the synergistic response study of hyperthermia applications. However, some challenges, including the synthesis process, dose optimization of laser, and magnetic field strength besides its frequency, need significant attention. Herein, we prepared magneto-plasmonic Ag/Co nanomaterials for photothermal performance evaluation using dual-beam of the Q-switched Nd:YAG 1064 nm pulsed laser ablation in distilled water, which can avoid any additive, contaminations, complicated route, and multiple purifications processes as they may occur in chemical synthesis processes. Properties, morphologies, and compositions of synthesized nanomaterials were studied, and results suggested that the main constituents of NPs were Ag/Co. The detailed theoretical calculation of the photothermal performance of nanofluid is described, along with an experimental study of nanofluid and the water as a reference medium using NIR 808 nm laser. The overall results suggest that the higher temperatures for Ag/Co nanofluid compared with water alone were recorded as 16.5 °C, 20.9 °C, 24.7 °C, 24.5 °C, 27.7 °C, and 30.2 °C during 808 nm laser irradiation operating at different corresponding powers, respectively. The possible reason for the higher temperature profiles and the rapid temperature rise of nanofluid than water alone is the localized surface plasmon effects of nanoparticles. These results evidence that silver and cobalt nanomaterials composite structures could significantly increase hyperthermia based on an effective and simple synthesis approach.
Similar content being viewed by others
References
J. Fang and Y.-C. Chen, C. pharmaceutical design, 19, 6622 (2013).
Y. Hu, R. Wang, S. Wang, L. Ding, J. Li, Y. Luo, X. Wang, M. Shen, X. Shi, Sci. Rep. 6, 1 (2016)
Z. H. Liu, X. F. Yang, G. L. Guo, J. Appl. Phys. 102, (2007).
H. Zoubos, L. E. Koutsokeras, D. F. Anagnostopoulos, E. Lidorikis, S. A. Kalogirou, A. R. Wildes, P. C. Kelires, and P. Patsalas, Sol. Energy Mater. Sol. Cells 117, 350 (2013)
S. Lee, R. George Thomas, M. Ju Moon, H. Ju Park, I. K. Park, B. Il Lee, Y. Yeon Jeong, Sci. Rep. 7, 1 (2017).
L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, Nat. Photonics 10, 393 (2016)
Y. Hernández, B. C. Galarreta, Nanomater. Magn. Opt. Hyperth. Appl., 83–109 (2018).
U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Nat. Methods 5, 763 (2008)
K. Cherukula, K. Manickavasagam Lekshmi, S. Uthaman, K. Cho, C.-S. Cho, I.-K. Park, Nanomaterials 6, 76 (2016).
P. Pan, Y. Lin, Z. Gan, X. Luo, W. Zhou, and N. Zhang, J. Appl. Phys. 123, 115115 (2018).
Z. Qin, M. Etheridge, J. C. Bischof, Energy-Based Treat. Tissue Assess. VI, edited by T. P. Ryan (SPIE, 2011), p. 79010C.
H. Xiang, H. J. Lin, T. Niu, Z. Chen, L. Aigouy, J. Appl. Phys. 125, (2019).
X. Liu, H. J. Chen, X. Chen, Y. Alfadhl, J. Yu, D. Wen, J. Appl. Phys. 115, (2014).
T. Cantu, K. Walsh, V.P. Pattani, A.J. Moy, J.W. Tunnell, J.A. Irvin, T. Betancourt, Int. J. Nanomedicine 12, 615 (2017)
M. Yamada, M. Foote, and Tarl. W Prow, nanobiotechnology, 7, 428 (2015)
C.M. Hessel, V.P. Pattani, M. Rasch, M.G. Panthani, B. Koo, J.W. Tunnell, B.A. Korgel, Nano Lett. 11, 2560 (2011)
X.-F. Zhang, Z.-G. Liu, W. Shen, S. Gurunathan, Int. J. Mol. Sci. 17, 1534 (2016)
A. Katiyar, T. Nandi, N. E. Prasad, J. Appl. Phys. 125, (2019).
T.E. Torres, E. Lima, M.P. Calatayud, B. Sanz, A. Ibarra, R. Fernández-Pacheco, A. Mayoral, C. Marquina, M.R. Ibarra, G.F. Goya, Sci. Rep. 9, 1 (2019)
R. Hu, M. Zheng, J. Wu, C. Li, D. Shen, D. Yang, L. Li, M. Ge, Z. Chang, W. Dong, Nanomaterials 7, 111 (2017)
Z. Swiatkowska-Warkocka, Kenji Koga, Kenji Kawaguchi, Hongqiang Wang, Alexander Pyatenko, and Naoto Koshizaki, RSC Adv. 3, 79 (2012).
A. S. Vijayanandan, R. S. Kandath Valappil, and R. M. Balakrishnan, Sustain. Energy Technol. Assessments 37, 100598 (2020).
T. Bala, S.K. Arumugam, R. Pasricha, B.L.V. Prasad, M. Sastry, J. Mater. Chem. 14, 1057 (2004)
Z. Khan, S.A. Al-Thabaiti, A.Y. Obaid, M.A. Malik, M.N. Khan, T.A. Khan, J. Mol. Liq. 222, 272 (2016)
K. Santhi, D. Kumarsan, N. Vengidusamy, S. Arumainathan, J. Magn. Magn. Mater. 433, 202 (2017)
L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, Nano Lett. 11, 1237 (2011).
V. Amendola, M. Meneghetti, O. M. Bakr, P. Riello, S. Polizzi, D. H. Anjum, S. Fiameni, P. Arosio, T. Orlando, C. de J. Fernandez, F. Pineider, C. Sangregorio, and A. Lascialfari, Nanoscale 5, 5611 (2013).
E. V Barmina and G. A. Shafeev, Quantum Electron. 48, 637 (2018).
F. Bertorelle, M. Pinto, R. Zappon, R. Pilot, L. Litti, S. Fiameni, G. Conti, M. Gobbo, G. Toffoli, M. Colombatti, G. Fracasso, M. Meneghetti, Nanoscale 10, 976 (2018)
G. C. Messina, M. G. Sinatra, V. Bonanni, R. Brescia, A. Alabastri, F. Pineider, G. Campo, C. Sangregorio, G. Li-Destri, G. Sfuncia, G. Marletta, M. Condorelli, R. P. Zaccaria, F. De Angelis, and G. Compagnini, J. Phys. Chem. C. 120, 12810 (2016).
P. Wagener, J. Jakobi, C. Rehbock, V.S.K. Chakravadhanula, C. Thede, U. Wiedwald, M. Bartsch, L. Kienle, S. Barcikowski, Sci. Rep. 6, 1 (2016)
V. Amendola, S. Scaramuzza, S. Agnoli, G. Granozzi, M. Meneghetti, G. Campo, V. Bonanni, F. Pineider, C. Sangregorio, P. Ghigna, S. Polizzi, P. Riello, S. Fiameni, L. Nodari, Nano Res. 8, 4007 (2015)
K. Liu, J. Chen, H. Qu, Y. Dong, Y. Gao, J. Liu, X. Liu, Y. Zou, H. Zeng, Appl. Phys. Lett. 113, (2018).
S. Mandal and K. M. Krishnan, J. Mater. Chem. 17, 372 (2007).
Y. Song, J. Ding, and Y. Wang, J. Phys. Chem. C. 116, 11343 (2012).
J. Garcia-Torres, E. Vallés, and E. Gómez, J. Nanoparticle Res. 12, 2189 (2010).
J. R. González-Castillo, E. Rodriguez, E. Jimenez-Villar, D. Rodríguez, I. Salomon-García, G. F. De Sá, T. García-Fernández, D. B. Almeida, C. L. Cesar, R. Johnes, and J. C. Ibarra, N. research letters, 10, 1 (2015).
A. Ashok, A. Kumar, F. Tarlochan, Nanomaterials 8, 604 (2018)
N. C. Shin, Y. H. Lee, Y. H. Shin, J. Kim, and Y. W. Lee, Mater. Chem. Phys. 124, 140 (2010).
S. Hu, G. Goenaga, C. Melton, T.A. Zawodzinski, D. Mukherjee, Appl. Catal. B Environ. 182, 286 (2016)
S. Papp, R. Patakfalvi, and I. Dekany, CROATICA CHEMICA ACTA, 80, 493 (2007).
A. Henglein, J. Phys. Chem. 97, 5457 (2002).
G.X. Chen, M.H. Hong, B. Lan, Z.B. Wang, Y.F. Lu, T.C. Chong, Appl. Surf. Sci. 228, 169 (2004)
S. Gangopadhyay, G. C. Hadjipanayis, C. M. Sorensen, and K. J. Klabunde, 28, 3174 (1992).
D. Srikala, V.N. Singh, A. Banerjee, B.R. Mehta, S. Patnaik, J. Phys. Chem. C 112, 13882 (2008)
J. B. Tracy, D. N. Weiss, D. P. Dinega, M. G. Bawendi, Phys. Rev. B Condens. Matter Mater. Phys. 72, 064404 (2005).
J. R. Childress and C. L. Chien, Phys. Rev. B 43, 8089 (1991).
A. Furube, S. Hashimoto, NPG Asia Mater. 9, e454 (2017).
J. Guo, K. Rahme, Y. He, L.-L. Li, J. D. Holmes, and C. M. O’Driscoll, Int. J. Nanomedicine 12, 6131 (2017).
Q. Jiang, W. Zeng, C. Zhang, Z. Meng, J. Wu, Q. Zhu, D. Wu, and H. Zhu, Sci. Rep. 7, 1 (2017).
T. Boldoo, J. Ham, E. Kim, H. Cho, Energies 13, 5748 (2020)
D.K. Roper, W. Ahn, M. Hoepfner, J. Phys. Chem. C 111, 3636 (2007)
F. Wo, R. Xu, Y. Shao, Z. Zhang, M. Chu, D. Shi, S. Liu, Theranostics 6, 485 (2016)
P. Kaur, M.L. Aliru, A.S. Chadha, A. Asea, S. Krishnan, Int. J. Hyperth. 32, 76 (2016)
R. Mendes, P. Pedrosa, J.C. Lima, A.R. Fernandes, P.V. Baptista, Sci. Rep. 7, 1 (2017)
H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, J. Wang, Small 6, 2272 (2010)
J.T. Jørgensen, K. Norregaard, P. Tian, P.M. Bendix, A. Kjaer, L.B. Oddershede, Sci. Rep. 6, 1 (2016)
E. Petryayeva, U.J. Krull, Anal. Chim. Acta 706, 8 (2011)
T.M. Liu, J. Conde, T. Lipiński, A. Bednarkiewicz, C.C. Huang, NPG Asia Mater. 8, 295 (2016)
B. Cheng, H. He, T. Huang, S.S. Berr, J. He, D. Fan, J. Zhang, P. Xu, J. Biomed. Nanotechnol. 12, 435 (2016)
Q. Jiang, W. Zeng, C. Zhang, Z. Meng, J. Wu, Q. Zhu, D. Wu, H. Zhu, Sci. Rep. 7, 1 (2017)
S.J. Oldenburg, R.D. Averitt, S.L. Westcott, N.J. Halas, Chem. Phys. Lett. 288, 243 (1998)
C. Justin, S.A. Philip, A.V. Samrot, Appl. Nanosci. 7, 463 (2017)
A. Espinosa, R. Di Corato, J. Kolosnjaj-Tabi, P. Flaud, T. Pellegrino, C. Wilhelm, ACS Nano 10, 2436 (2016)
M. Wu, S. Huang, Mol. Clin. Oncol. 7, 738 (2017)
R. Lv, P. Yang, B. Hu, J. Xu, W. Shang, J. Tian, ACS Nano 11, 1064 (2017)
A.F. Bagley, S. Hill, G.S. Rogers, S.N. Bhatia, ACS Nano 7, 8089 (2013)
S.C. Boca, M. Potara, A.M. Gabudean, A. Juhem, P.L. Baldeck, S. Astilean, Cancer Lett. 311, 131 (2011)
J. Zhao, C. Zhou, M. Li, J. Li, G. Li, D. Ma, Z. Li, D. Zou, Oncotarget 8, 106707 (2017).
Z. Wang, S. Li, M. Zhang, Y. Ma, Y. Liu, W. Gao, J. Zhang, Y. Gu, Adv. Sci. 4, 1600327 (2017)
A. Bucharskaya, G. Maslyakova, G. Terentyuk, A. Yakunin, Y. Avetisyan, O. Bibikova, E. Tuchina, B. Khlebtsov, N. Khlebtsov, V. Tuchin, Int. J. Mol. Sci. 17, 1295 (2016)
M. Mehrali, M.K. Ghatkesar, R. Pecnik, Appl. Energy 224, 103 (2018)
Acknowledgements
Imran Ali and Yunxiang Pan contributed equally to this work. This work was financially supported by the Fundamental Research Funds for the Central Universities (No.30919011253, No.30918011335), National Natural Science Foundation of China (No.61975080, No.61805120), Natural Science Foundation of Jiangsu Province (BK20181296), Large Equipment Open Fund from Nanjing University of Science and Technology. Yasir Jamil is thankful to the Higher Education Commission of Pakistan for financial support under project No NRPU-6409.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Co-first author: Imran Ali, Yunxiang Pan.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Ali, I., Pan, Y., Lin, Y. et al. Synthesis of Ag/Co nanoparticles by dual pulsed laser ablation for synergistic photothermal study. Appl. Phys. A 127, 632 (2021). https://doi.org/10.1007/s00339-021-04706-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-021-04706-3