Skip to main content
Log in

Enhanced DC conductivity and Seebeck coefficient of CoWO4/PbWO4 nanocomposites: role of interface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CoWO4/PbWO4 ceramic nanocomposites with an interface formation were prepared using a simple co-precipitation method and were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), zeta potential measurement, energy dispersive X-ray spectroscopy (EDS) and high-resolution transmission electron microscope (HRTEM). DC conductivity (σdc) has been studied for variable temperature. The thermoelectric study was done, and related parameter such as Seebeck coefficient (S) and power factor (P) was calculated and discussed in detail. Enhanced σdc and S were observed for CoWO4/PbWO4 nanocomposites due to creation of space charge layer (SCL) at the interface. Interface formation between the CoWO4 and PbWO4 nanoparticles creates SCL which leads to increase the σdc and also interface acts as a barrier to scatter the charge carriers, thus enhancing the S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Wolf, R. Hinterding, A. Feldhoff, Entropy 21, 1058 (2019)

    Article  ADS  Google Scholar 

  2. A. Nag, V. Shubha, J. Elect. Mater. 43, 962–977 (2014)

    Article  ADS  Google Scholar 

  3. P. Dey, S.S. Jana, F. Anjum, T. Bhattacharya, T. Maiti, Appl. Mater. Today 21, 100869 (2020)

    Article  Google Scholar 

  4. J. Martin, L. Wang, Li. Chen, G. S. Nolas, Phys. Rev. B. 79, 115311(2009).

  5. B. Liu, J. Hu, J. Zhou, R. Yang, Materials. 10, 418 (2017)

    Article  ADS  Google Scholar 

  6. C. Zhang, H. Ng, Z. Li, K. Aik Khor, Q. Xiong, ACS Appl. Mater. Interfaces. 9, 12501−12510 (2017)

  7. A. Moure et al., Nano Energy 31, 393–402 (2017)

    Article  Google Scholar 

  8. A. Kumar et al., J. Alloys Compounds 838, 155673 (2020)

    Article  Google Scholar 

  9. M.T.Z. Myint, M. Hada, H. Inoue, T. Marui, T. Nishikawa, Y. Nishina, S. Ichimura, M. Umeno, A. Kyaw, Y. Hayash, RSC Adv. 8, 36563 (2018)

    Article  ADS  Google Scholar 

  10. A. Ohtomo, H.Y. Hwang, Nature 427, 423–426 (2004)

    Article  ADS  Google Scholar 

  11. Y. Z. Chen, J. L. Zhao, J. R. Sun, N. Pryds, B. G. Shen, Appl. Phys.Lett. 97, 123102 (2010)

  12. J.E. Bauerle, J. Phys. Chem. Solids. 30, 2657–2670 (1969)

    Article  ADS  Google Scholar 

  13. A. Gharleghi, P.C. Hung, F.H. Lin, C.J. Li, A.C.S. Appl, Mater. Interfaces. 8, 35123–35131 (2016)

    Article  Google Scholar 

  14. J. Dong, W. Liu, H. Li, X. Sua, X. Tang, C. Uher, J. Mater. Chem. A. 1, 12503 (2013)

    Article  Google Scholar 

  15. Y.S.Wudil, M.A. Gondal, S.G. Rao, S. Kunwar, A. Q. Alsayoud, Mater. Chem. and Phys. 253, 123321 (20202). https://doi.org/10.1016/j.matchemphys.2020.123321

  16. Numan Salah et al., J. Europ. Ceram. Society 39, 3307–3314 (2019) https://doi.org/10.1016/j.jeurceramsoc.2019.04.036)

  17. S.-S. Lee, I. Jang, J.-S. Rhyee, S.-J. Hong, Sung Jong Yoo, Il-Kyu Park. Appl. Surf. Sci. 548, 149200 (2021). https://doi.org/10.1016/j.apsusc.2021.149200

    Article  Google Scholar 

  18. V. Shalini, M. Navaneethan, S. Harish, J. Archana, S. Ponnusamy, H. Ikeda, Y. Hayakawa, Appl. Surf. Sci. 493, 1350–1360 (2019)

    Article  ADS  Google Scholar 

  19. M. Acharya, Subhra Sourav Jana, Mani Ranjan, Tanmoy Maiti. Nano Energy 84, 105905 (2021). https://doi.org/10.1016/j.nanoen.2021.105905

  20. X. Xu, J. Shen, N. Li, M. Ye, Electrochim. Acta. 150, 23 (2014)

    Article  Google Scholar 

  21. J. Deng, L. Chang, P. Wang, E. Zhang, J. Ma, T. Wang, Cryst. Res. Technol. 47, 1004 (2012)

    Article  Google Scholar 

  22. S. Chen, G. Yang, Y. Jia, H. Zheng, ChemElectroChem 3, 1490 (2016)

    Article  Google Scholar 

  23. X. Xing, Y. Gui, G. Zhang, C. Song, Electrochim. Acta. 157, 15 (2015)

    Article  Google Scholar 

  24. C. Ling, L.Q. Zhou, H. Jia, RSC. Adv. 4, 24692 (2014)

    Article  ADS  Google Scholar 

  25. G.K. Choi, J.R. Kim, S.H. Yoon, K.S. Hong, J. Eur. Ceramic. Soc. 27, 3063 (2007)

    Article  Google Scholar 

  26. Y. Li, X. Li, J. Wang, Y. Jun, Z. Tang, RSC Adv. 7, 2919 (2017)

    Article  ADS  Google Scholar 

  27. P.K. Pandey, N.S. Bhave, R.B. Kharat, J. Mater. Sci. 42, 7927 (2007)

    Article  ADS  Google Scholar 

  28. M.J. Kim, H. Park, H.J. Kim, J. Korean Phys. Soc. 69, 1130 (2016)

    Article  ADS  Google Scholar 

  29. R. Saraf, C. Shivakumara, S. Behera, H. Nagabhushana, N. Dhananjaya, Spectrochim. Acta. Part A. 135, 348 (2015)

    Article  ADS  Google Scholar 

  30. Y. Xiong, B. Wang, H. Zhuang, X. Jiang, G. Ma, Y. Yi, W. Hu, Y. Zhou, RSC Adv. 4, 36738 (2014)

    Article  ADS  Google Scholar 

  31. W. Wang, S. Lee, H. Piao, D. Choi, Y. Son, CrystEngComm 17, 6548 (2015)

    Article  Google Scholar 

  32. E. Auffray, M. Korjik, T. Shalapska, S. Zazubovich, J. Lumin. 154, 381 (2014)

    Article  Google Scholar 

  33. V. Dormenev et al., Restart of the production of high-quality PbWO4 crystals for calorimetry applications. in Engineering of Scintillation Materials and Radiation Technologies. ISMART 2016, ed. by M. Korzhik, A. Gektin. Springer Proceedings in Physics, vol. 200 (Springer, Cham, 2017). https://doi.org/10.1007/978-3-319-68465-9_6

  34. H. Huang, X. Feng, W. Zhu, Y. Zhang, T.L. Wen, T.B. Tang, J. Phys.: Condens. Matter. 15, 5689 (2003)

    ADS  Google Scholar 

  35. M. Jeyakanthan, U. Subramanian, R.B. Tangsali, J Mater Sci: Mater Electron. 29, 1914 (2018)

    Google Scholar 

  36. Z.F. Liang, M.Y. Shuang, Res. J. Appl. Sci. Eng. Technol. 6, 2644–2648 (2013)

    Article  Google Scholar 

  37. L.G. Qiang, G. Lian, L. Wei-Ling, H. Dong-Sheng, J. Inorg. Mater. 14, 813–817 (1999)

    Google Scholar 

  38. V.N. Shevchuk, I.V. Kayun, Phys. Solid State 47, 632 (2005)

    Article  ADS  Google Scholar 

  39. R. Bharati, R.A. Singh, J. Mater Sci. 16, 75 (1981)

    Article  Google Scholar 

  40. N.F. Mott, Phil. Mag. 19, 835 (1969)

    Article  ADS  Google Scholar 

  41. A.S. Hassanien, A.A. Akl, J. Non-Cryst, Solids. 432, 471 (2016)

    Google Scholar 

  42. N. Pryds, V. Esposito, J. Electroceram. 38, 1 (2017)

    Article  Google Scholar 

  43. E. Fabbri, D.Pergolesi, E. Traversa, Sci. Technol. Adv. Mater. 11, 054503 (2010).

  44. D.V. Christensen, Y. Chen, V. Esposito, N. Pryds, APL Mater. 7, 013101 (2019).

  45. J. Maier, Nat. Mater. 4, 805 (2005)

    Article  ADS  Google Scholar 

  46. B. Ding, H. Qian, C. Han, J. Zhang, S. Lindquist, B. Wei, Z. Tang, J. Phys. Chem. C 118, 25633 (2014)

    Article  Google Scholar 

  47. C. Zang, D. Guo, G. Hu, Y. Chen, H. Liu, H. Zang, Z. Wang, Phys. Rev. B. 87, 035416(2013).

  48. M. Jeyakanthan, U. Subramanian, R. B. Tangsali, A. Ramesh, Phys. B: Condens. Matter. 586, 412151 (2020).

  49. N. Sivakumar, A. Narayanasamy, K. Shinoda, C. N. Chinnasamy, B. Jeyadevan, J. Appl. Phys. 102, 013916 (2007).

  50. M. Naeem, S. K Hasanain, A. Mumtaz, , J. Phys.: Condens. Matter. 20, 025210 (2008).

  51. M. Wang, C. Bi, L. Li, S. Long, Q. Liu, H. Lv, N. Lu, P. Sun, M. Liu, Nat. Commun. 5, 4598 (2014)

    Article  ADS  Google Scholar 

  52. Y. Y. Li, X. Y. Qin, D. Li, J. Zhang, C. Li, Y. F. Liu, C. J. Song, H. X. Xin, H. F. Guo, Appl. Phys. Lett. 108, 062104 (2016)

  53. M. Liu, X. Y. Qin, Appl. Phys. Lett. 101, 132103 (2012).

  54. J.H. Kim, M.J. Kim, S. Oh, J.S. Rhyee, S.D. Park, D. Ahn, Dalton Trans. 44, 3185–3189 (2015)

    Article  Google Scholar 

  55. Y.Liu, D. Cadavid, M. Ibáñez, S. Ortega, S. M. Sánchez, O. Dobrozhan, M. V. Kovalenko, J. Arbiol, A. Cabot, APL Mater. 4, 104813 (2016).

  56. B. Liu, J. Hu, J. Zhou, R. Yang 10, 418 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors are extremely thankful to Prof. K. R. Priolkar, Department of Physics, Goa University for discussions of thermoelectric properties analysis. Author M. Jeyakanthan is greatly acknowledge to UGC- BSR, New Delhi, for providing fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jeyakanthan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyakanthan, M., Subramanian, U. Enhanced DC conductivity and Seebeck coefficient of CoWO4/PbWO4 nanocomposites: role of interface. Appl. Phys. A 127, 569 (2021). https://doi.org/10.1007/s00339-021-04701-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04701-8

Keywords

Navigation