Skip to main content
Log in

Synthesis, growth and computational studies on vanillin nicotinamide single crystals

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Vanillin nicotinamide (VN) has been grown by the slow evaporation method using ethanol solvent. The structural parameters and crystalline nature occurring in the crystal were analyzed by X-ray diffraction techniques. The functional groups and vibrational modes were analyzed by spectral studies. The optical absorption property of the VN crystal was analyzed using Ultraviolet–visible spectrophotometer. Thermal stability of the grown crystal was performed through thermogravimetric analysis/differential thermal analysis. The Fourier transform infrared spectrum of VN in solid-phase was recorded in order to identify the functional groups. Density functional theory computations were used by B3LYP/6–3-21G (d, P) as a standard basis set to optimize molecular geometry. The highest occupied molecular orbital (HOMO)- lowest-unoccupied molecular orbital (LUMO) energy gap and natural bond orbital of the grown VN crystal were examined using the B3LYP/3-21G (d, p) basis set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Archana, S. Sudhahar, S. Sagadevan et al., Appl. Phys. A 126, 188 (2020)

    Article  ADS  Google Scholar 

  2. S. Mugeshini et al., Chin. J. Phys. 72, 229–239 (2021)

    Article  Google Scholar 

  3. P. Singh, M.M. Abdullah, S. Sagadevan, S. Ikram, J. Mater. Sci. Mater. Electron 29, 7904–7916 (2018)

    Article  Google Scholar 

  4. S. Suresh, J. Electric. Mater. 45, 5904–5909 (2016)

    Article  ADS  Google Scholar 

  5. Archana et al., Chem. Phys. Lett. 764(8), 138269 (2021)

    Google Scholar 

  6. A.V. Mohammed, S. Sagadevan, Y.A. Wahab, R.A.M. Osman, AIP Conference Proceedings, 2203, 020034 (2020)

  7. S. Sagadevan, Optik Int. J. Light Electron Opt. 125(19), 5842–5845 (2014)

    Article  Google Scholar 

  8. V. Azeezaa, A.J. Arul Pragasam, T.G. Sunitha, P. Koteeswari, S. Suresh, Acta Phys. Polonica A 128, 423–430 (2015)

    Article  ADS  Google Scholar 

  9. R. Vasanthakumari, W. Nirmala et al., J. Mol. Struct. 1239, 130449 (2021)

    Article  Google Scholar 

  10. S. Archana Rajendran, K.S. Sudhahar et al., Chin. J. Phys. 67, 283–292 (2020)

    Article  Google Scholar 

  11. N. Suresh, M. Selvapandiyan et al., Chin. J. Phys. 67, 349–359 (2020)

    Article  Google Scholar 

  12. A.V. Mohammed et al., Mater. Res. 18(4), 828–832 (2015)

    Article  Google Scholar 

  13. S. Sagadevan, Optik 125(19), 5842–5845 (2014)

    Article  ADS  Google Scholar 

  14. K. Pandurangan, S. Suresh, J. Mater., Article ID 362678, 7 pages (2014)

  15. A. Chandramohan, R. Bharathikannan, M.A. Kandhaswamy, J. Chandrasekaran, R. Renganathan, V. Kandavelu, Cryst. Res. Technol. 43, 173–178 (2008)

    Article  Google Scholar 

  16. A. Chandramohan, D. Gayathri, D. Velmurugan, K. Ravikumar, M.A. Kandasamy, Acta Crystallogr. Sect. E 63, 2495–2496 (2007)

    Article  Google Scholar 

  17. H.T. Flakus, N. Rekik, A. Jarczyk, J. Phys. Chem. A 116, 2117–2130 (2012)

    Article  Google Scholar 

  18. H. Ghalla, N. Rekik, A. Michta, B. Oujia, H.T. Flakus, Spectrochim. Acta A 75, 37–47 (2010)

    Article  ADS  Google Scholar 

  19. A. Karolin Martina, P. Arul, J. Arul Martin Mani, N.S. Nirmala Jothi, P. Sagayaraj, MMSE J. 9, 01503668 (2017)

    Google Scholar 

  20. P. Zachariadis, S. Hadjikakou, N. Hadjiliadis, A. Michaelides, S. Skoulika, Y. Ming, Y. Xiaolin, Inorg. Chim. Acta. 343, 361–365 (2003)

    Article  Google Scholar 

  21. Z. Chohan, A. Rauf, S. Noreen, A. Scozzafava, C. Supuran, J. Enzyme Inhib. Med. Chem. 17, 101–106 (2002)

    Article  Google Scholar 

  22. S. Osinsky, I. Levitin, L. Campanella, P. Wadman, Exp. Oncol. 26, 140–144 (2004)

    Google Scholar 

  23. M.J. Frisch, GAUSSIAN 09, Revision A. 9, Gaussian, INC, Pittsburgh, 2009.

  24. H.B. Schlegel, J. Comput. Chem. 3, 214–218 (1982)

    Article  Google Scholar 

  25. F.-F. How, M.S. Amalina, H. Khaledi, H.M. Ali, Acta Cryst. E 67, o3168 (2011)

    Article  Google Scholar 

  26. C.N.R. Rao, Ultraviolet and Visible Spectroscopy of Organic Compound (Prentice-Hall Pvt Ltd., New Delhi, 1984), pp. 60–66

    Google Scholar 

  27. G. Parvathy, E. Kaliammal, G. Maheshwari, P. Devendran, M. Krishna Kumar, S. Sudhahar, J. Mater. Sci. Mater. Electron. 31, 18937–18953 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Santhakumari or Suresh Sagadevan.

Ethics declarations

Conflict of Interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buvaneswari, M., Santhakumari, R., Jayasree, R. et al. Synthesis, growth and computational studies on vanillin nicotinamide single crystals. Appl. Phys. A 127, 544 (2021). https://doi.org/10.1007/s00339-021-04691-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04691-7

Keywords

Navigation