Skip to main content
Log in

Three-dimensional hierarchical structured Fe3O4/rGO/ZnO composite for effective electromagnetic wave absorption

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The three-dimensional Fe3O4/rGO/ZnO composite was successfully fabricated with a two-step method. Particularly, with rGO as the substrate, spindle-shaped ZnO nanorods and magnetic nanoparticles Fe3O4 are uniformly dispersed on the surface of rGO. Various equipments are used to test the structure, morphology and performance of the composite. Compared with single Fe3O4 nanoparticles and Fe3O4/rGO composite, the Fe3O4/rGO/ZnO composite has excellent EMWA performance. The minimum RL of the Fe3O4/rGO/ZnO composite is − 58.7 dB and the effective absorption bandwidth less than − 10 dB is 5.4 GHz (effective absorption bandwidth, RL ≤  − 10 dB, 12.6–18.0 GHz) with a thickness of 2 mm. It is believed that multi-layered hierarchical Fe3O4/rGO/ZnO composite can be used as an electromagnetic wave absorber and is a prospective material in these technical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig.3
Fig.4
Fig.5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig.13

Similar content being viewed by others

References

  1. Z. Yang, Y. Zhang, M. Li, L. Yang, J. Liu, Y. Hou et al., Surface architecture of Ni-based metal organic framework hollow spheres for adjustable microwave absorption. ACS Appl. Nano Mater. 2(12), 7888–7897 (2019)

    Google Scholar 

  2. X. Cui, X. Liang, J. Chen, W. Gu, G. Ji, Y. Du, Customized unique core-shell Fe2N@N-doped carbon with tunable void space for microwave response. Carbon 156, 49–57 (2020)

    Google Scholar 

  3. Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016)

    Google Scholar 

  4. N. Yang, Z.X. Luo, S.C. Chen, G. Wu, Y.Z. Wang, Fe3O4 nanoparticle/N-Doped carbon hierarchically hollow microspheres for broadband and high-performance microwave absorption at an ultralow filler loading. ACS Appl. Mater. Interfaces 12(16), 18952–18963 (2020)

    Google Scholar 

  5. D. Liu, Y. Du, F. Wang, Y. Wang, L. Cui, H. Zhao et al., MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157, 478–485 (2020)

    Google Scholar 

  6. D. Xu, J. Liu, P. Chen, Q. Yu, J. Wang, S. Yang et al., In situ growth and pyrolysis synthesis of super-hydrophobic graphene aerogels embedded with ultrafine β-Co nanocrystals for microwave absorption. J. Mater. Chem. C 7(13), 3869–3880 (2019)

    Google Scholar 

  7. J.B. Cheng, H.G. Shi, M. Cao, T. Wang, Y.Z. Wang, Porous carbon materials for microwave absorption. Mater. Adv. 8(1), 2631–2645 (2020)

    Google Scholar 

  8. J. Li, S. Yang, P. Jiao, Q. Peng, W. Yin, Y. Yuan et al., Three-dimensional macroassembly of hybrid C@CoFe nanoparticles/reduced graphene oxide nanosheets towards multifunctional foam. Carbon 157, 427–436 (2020)

    Google Scholar 

  9. I. Abdalla, A. Elhassan, J.Y. Yu, Z.L. Li, B. Ding, A hybrid comprised of porous carbon nanofibers and rGO for efficient electromagnetic wave absorption. Carbon 157, 703–713 (2020)

    Google Scholar 

  10. D. Liu, Y. Du, P. Xu, F. Wang, X. Han, Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 9, 5086–5096 (2021)

    Google Scholar 

  11. C. Ji, Y. Liu, Y. Li, X. Su, J. Xu, L. Lu, Facile preparation and excellent microwave absorption properties of cobalt-iron/porous carbon composite materials. J. Magn. Magn. Mater. 20(527), 167776 (2021)

    Google Scholar 

  12. X. Zhang, X. Ren, C. Wang, N. Chen, N. Song, Synthesis of layered Fe3O4 nanodisk and nanostructure dependent microwave absorption property. J. Mater. Sci. Mater. Electron. 32, 4404–4415 (2021)

    Google Scholar 

  13. M. Green, A.T.V. Tran, R. Smedley, A. Roach, X. Chen, Microwave absorption of magnesium/hydrogen-treated titanium dioxide nanoparticles. Nano Mater. Sci. 1(1), 48–59 (2019)

    Google Scholar 

  14. T.S. Mahule, J. Das, V.V. Srinivasu, Low-field microwave absorption in Zn(1–x)(Mn:Fe(Ni))xO (x=0.02) system: hysteresis, line shapes and powdering effects. Appl. Phys. A 125(4), 231 (2019)

    ADS  Google Scholar 

  15. M.Y. Kong, Z.R. Jia, B.B. Wang, J.L. Dou, G.L. Wu, Construction of metal-organic framework derived Co/ZnO/Ti3C2Tx composites for excellent microwave absorption. Sustain. Mater. Technol. 26(14), 00219 (2020)

    Google Scholar 

  16. M.T. Qiao, D. Wei, X.W. He, X.F. Lei, Q.Y. Zhang, Novel yolk–shell Fe3O4@void@SiO2@PPy nanochains toward microwave absorption application. J. Mater. Sci. 56(2), 1–16 (2021)

    Google Scholar 

  17. M. Cai, A. Shui, X. Wang, C. He, B. Du, A facile fabrication and high-performance electromagnetic microwave absorption of ZnO nanoparticles. J. Alloy. Compd. 842, 155638 (2020)

    Google Scholar 

  18. M. Qiao, J. Li, D. Wei, X. He, X. Lei, J. Wei et al., Chain-like Fe3O4@void@mSiO2@MnO2 composites with multiple porous shells toward highly effective microwave absorption application. Microporous Mesoporous Mater. 314, 110867 (2021)

    Google Scholar 

  19. Y.H. Cui, K. Yang, J.Q. Wang, T. Shah, B.L. Zhang, Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon 172, 1–14 (2021)

    Google Scholar 

  20. F. Ebrahimi Tazangi, H. Hekmatara, Y.J. Seyed, Remarkable microwave absorption of GO-SiO2/Fe3O4 via an effective design and optimized composition. J. Alloy. Compd. 854, 157213 (2021)

    Google Scholar 

  21. Y. Liang, Y. Yuan, B. Wang, Y. Wang, S. Wei, Microstructure and microwave absorption properties of ZnO with different surfactants by hydrothermal method. J. Mater. Sci. Mater. Electron. 6, 1–11 (2021)

    Google Scholar 

  22. G.H. He, Y.P. Duan, H.F. Pang, J.J. Hu, Superior microwave absorption based on ZnO capped MnO2 Nanostructures. Adv. Mater. Interfaces 7(15), 2000407 (2020)

    Google Scholar 

  23. L. Zhou, J. Yu, M. Chen, H. Wang, X. Su, Influence of particle size on the microwave absorption properties of FeSiAl/ZnO-filled resin composite coatings. J. Mater. Sci. Mater. Electron. 31(3), 2446–2453 (2020)

    Google Scholar 

  24. J.H. Luo, K. Zhang, M.L. Cheng, M.M. Gu, X.K. Sun, MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 380, 122625 (2020)

    Google Scholar 

  25. J.S. Li, H. Huang, Y.J. Zhou, C.Y. Zhang, Z.T. Li, Research progress of graphene-based microwave absorbing materials in the last decade. J. Mater. Res. 32, 1–18 (2017)

    Google Scholar 

  26. Q.L. Sun, Y.Y. Cai, L. Sun, W. Ye, X.Y. Long, S.J. Xu et al., Preparation of sandwich-like CNs@rGO nanocomposites with enhanced microwave absorption properties. J. Mater. Sci. 56(2), 1492–1503 (2021)

    ADS  Google Scholar 

  27. F. Li, L. Zhuang, W.W. Zhan, M.X. Zhou, X.P. Yang, Desirable microwave absorption performance of ZnFe2O4@ZnO@rGO nanocomposites based on controllable permittivity and permeability. Ceram. Int. 46(13), 21744–21751 (2020)

    Google Scholar 

  28. Z.H. Du, X.B. Chen, Y.W. Zhang, X.Y. Que, M.L. Zhai, One-pot hydrothermal preparation of Fe3O4 decorated graphene for microwave absorption. Materials 13(14), 3065 (2020)

    ADS  Google Scholar 

  29. H. Han, Z.B. Zhao, Z. Quan, Y. Gogotsi, J.S. Qiu, The role of microwave absorption on formation of graphene from graphite oxide. Carbon 50(9), 3267–3273 (2012)

    Google Scholar 

  30. Y.C. Yin, H. Zhang, Y. Li, N.N. Yang, G.K. Wei, Facile synthesis of monodisperse ultrasmall Fe3O4 nanoparticles on graphene nanosheets with excellent microwave absorption performance. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-020-04954-8

    Article  Google Scholar 

  31. C. Wu, Z.F. Chen, M.L. Wang, X. Cao, Y.Z. Huang, Microwave absorption: confining tiny MoO2 clusters into reduced graphene oxide for highly efficient low frequency microwave absorption. Small 16(30), 2001686 (2020)

    Google Scholar 

  32. X.F. Liu, Y.X. Chen, C.C. Hao, J.R. Ye, R.H. Yu, D.Q. Huang, Graphene-enhanced microwave absorption properties of Fe3O4/SiO2 nanorods. Compos. A Appl. Sci. Manuf. 89, 40–46 (2016)

    Google Scholar 

  33. H.Q. Zhao, Y. Cheng, Z. Zhang, B.S. Zhang, G.B. Ji, Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 173, 501–511 (2021)

    Google Scholar 

  34. D.D. Zhi, T. Li, J.Z. Li, H.S. Ren, F.B. Meng, A review of three-dimensional graphene-based aerogels: synthesis, structure and application for microwave absorption. Compos. B Eng. 211, 108642 (2021)

    Google Scholar 

  35. D.J. Zhang, Y.J. Liao, Z.H. Wang, X.F. Zhang, Z.P. Wang, Highly ordered, ultralight three-dimensional graphene-like carbon for high-frequency electromagnetic absorption. J. Mater. Sci. 56(6), 1–11 (2021)

    Google Scholar 

  36. N.A. Pohan, M.H. Wahid, Z. Zainal, N.A. Ibrahim, Pickering-emulsion-templated synthesis of 3D hollow graphene as an efficient oil absorbent. RSC Adv. 11, 3963–3971 (2021)

    ADS  Google Scholar 

  37. L. Wang, B. Wen, H.B. Yang, Y. Qiu, N.R. He, Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. A Appl. Sci. Manuf. 135, 105958 (2020)

    Google Scholar 

  38. X.C. Di, Y. Wang, Y.Q. Fu, X.M. Wu, P. Wang, Wheat flour-derived nanoporous carbon@ZnFe2O4 hierarchical composite as an outstanding microwave absorber. Carbon 173, 174–184 (2021)

    Google Scholar 

  39. X.H. Ren, X.L. Pu, H.F. Yin, Y. Tang, H.D. Yuan, H.Q. Fan, Fabrication of hierarchical PANI@W-type barium hexaferrite composites for highly efficient microwave absorption. Ceram. Int. 47, 12122–12129 (2021)

    Google Scholar 

  40. J. Ding, L.G. Cheng, X.T. Zhang, Q.F. Liu, Synthesis of multilayered micro flower NiCo2O4/GN/Fe3O4 composite for enhanced electromagnetic microwave (EM) absorption performance. J. Mater. Sci.: Mater. Electron. 30, 8864–8875 (2019)

    Google Scholar 

  41. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. Am. Chem. Soc. 208, 1334–1339 (1958)

    Google Scholar 

  42. L. Wang, H.L. Xing, Z.F. Liu, Z.Y. Shen, X. Sun, G.C. Xu, Synthesis and excellent microwave absorption properties of ZnO/Fe3O4/MWCNTs Composites. Nano 11(12), 1650139–1650150 (2016)

    Google Scholar 

  43. P. Sadhukhan, M. Kundu, S. Rana, R. Kumar, J. Das, P.C. Sil, Microwave induced synthesis of ZnO nanorods and their efficacy as a drug carrier with profound anticancer and antibacterial properties. Toxicol. Rep. 6, 176–185 (2019)

    Google Scholar 

  44. O. Akhavan, The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 48, 509–19 (2010)

    Google Scholar 

  45. C.Q. Song, X.W. Yin, M.K. Han, X.L. Li, Z.X. Hou, L.T. Zhang et al., Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 116, 50–58 (2017)

    Google Scholar 

  46. X. Liu, L.-S. Wang, Y. Ma, Y. Qiu, Q. Xie, Y. Chen et al., Facile synthesis and microwave absorption properties of yolk-shell ZnO-Ni-C/RGO composite materials. Chem. Eng. J. 333, 92–100 (2018)

    Google Scholar 

  47. A. Manikandan, J. Judith Vijaya, L. John Kennedy, M. Bououdina, Structural, optical and magnetic properties of Zn1−xCuxFe2O4 nanoparticles prepared by microwave combustion method. J. Mol. Struct. 1035, 332–340 (2013)

    ADS  Google Scholar 

  48. L. Wang, X.F. Yu, X. Li, J. Zhang, M. Wang, R.C. Che, MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 383, 123099 (2020)

    Google Scholar 

  49. L. Wang, B. Wen, T. Zhao, Y. Lin, Facile synthesis of N, S-codoped honeycomb-like C/Ni3S2 composites for broadband microwave absorption with low filler mass loading. J. Colloid Interface Sci. 580, 126–134 (2020)

    ADS  Google Scholar 

  50. L. Wang, Z. Du, L. Xiang, D. Hou, S. Zhu, J. Zhu et al., The ordered mesoporous carbon coated graphene as a high-performance broadband microwave absorbent. Carbon 179, 435–444 (2021)

    Google Scholar 

  51. J. Qiao, D. Xu, L. Lv, X. Zhang, F. Wang, W. Liu et al., Self-Assembled ZnO/Co Hybrid Nanotubes Prepared by Electrospinning for Lightweight and High-Performance Electromagnetic Wave Absorption. ACS Appl. Nano Mater. 1(9), 5297–5306 (2018)

    Google Scholar 

  52. L. Wang, Z. Du, X. Bai, Y. Lin, Constructing macroporous C/Co composites with tunable interfacial polarization toward ultra-broadband microwave absorption. J. Colloid Interface Sci. 591, 76–84 (2021)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Key R&D Project of Science and Technology Department of Henan Province (Key Science and Technology Tackling Project, Grant No. 212102210584), Cultivation Project of “Young Key Teachers in Universities of Henan Province, Funded by Young Key Teachers of Zhongyuan Institute of Technology” in 2019 (Jiaogao [2019] No. 350, Zhong Gongong [2018] No. 60) and the National Natural Science Foundation of China (Grant No. 11901162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Cheng, L. & Zhuang, X. Three-dimensional hierarchical structured Fe3O4/rGO/ZnO composite for effective electromagnetic wave absorption. Appl. Phys. A 127, 470 (2021). https://doi.org/10.1007/s00339-021-04625-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04625-3

Keywords

Navigation