Skip to main content
Log in

ZrO2/VO2/ZrO2 sandwich structure with improved optical properties and weatherability for smart window application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Vanadium dioxide (VO2) is considered as an ideal thermochromic material for smart window due to its reversible metal insulator transition around 340 K. However, its application is limited by the low luminous transmittance (Tlum), insufficient solar modulation ability (△Tsol) and unsatisfactory service performance. In this work, ZrO2/VO2 bi-layer and ZrO2/VO2/ZrO2 tri-layer films were prepared on glass substrates by pulse laser deposition. The bottom ZrO2 film acted as a buffer layer, which is conducive to the formation of VO2 film, while the top ZrO2 film played the role of antireflection layer (ARL), which can effectively improve the optical properties of VO2 film. As the ZrO2 buffer layer increased from 30 nm to 150 nm, the Tlum of ZrO2/VO2 films increased from 32.8% to 50.9% while maintaining a high △Tsol of ~ 8%. After introducing ZrO2 ARL, both the Tlum and △Tsol of the optimized ZrO2 (150 nm)/VO2 (60 nm)/ZrO2 (100 nm) structure were further enhanced synchronously to 55.8% and 10.2%, respectively. Besides, the hydrophobic properties of the obtained ZrO2/VO2/ZrO2 films were greatly enhanced. More importantly, even after 32 h of boiling water treatment, the △Tsol of the optimized ZrO2/VO2/ZrO2 tri-layer film was only decreased to ~ 6.1%, while the Tlum maintained at ~ 50%. Our results suggested that the proposed ZrO2/VO2/ZrO2 structure not only played a key role in balancing and improving Tlum and △Tsol, but also greatly extended the service life of VO2 smart window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F.J. Morin, Phys. Rev. Lett. 3, 34–36 (1959)

    Article  ADS  Google Scholar 

  2. Y. Li, S. Ji, Y. Gao, H. Luo, P. Jin, A.C.S. Appl, Mater. Interfaces 5, 6603–6614 (2013)

    Article  Google Scholar 

  3. S. Cueff, D. Li, Y. Zhou, F.J. Wong, J.A. Kurvits, S. Ramanathan, R. Zia, Nat. Commun. 6, 8636 (2015)

    Article  ADS  Google Scholar 

  4. T.D. Manning, I.P. Parkin, M.E. Pemble, D. Sheel, D. Vernardou, Chem. Mater. 16, 744–749 (2004)

    Article  Google Scholar 

  5. L. Sangwook, K. Hippalgaonkar, F. Yang, J. Hong, C. Ko, J. Suh, K. Liu, K. Wang, J.J. Urban, X. Zhang, C. Dames, S.A. Hartnoll, O. Delaire, J. Wu, Science 355, 371–374 (2017)

    Article  ADS  Google Scholar 

  6. X. Wu, Z. Wu, C. Ji, H. Zhang, Y. Su, Z. Huang, J. Gou, X. Wei, J. Wang, Y. Jiang, A.C.S. Appl, Mater. Interfaces 8, 11842–11850 (2016)

    Article  Google Scholar 

  7. N.R. Mlyuka, G.A. Niklasson, C.G. Granqvist, Phys. Status Solidi A-Appl. Mater. 206, 2155–2160 (2009)

    Article  ADS  Google Scholar 

  8. E.V. Babkin, A.A. Charyev, A.P. Dolgarev, H.O. Urinov, Thin Solid Films 150, 11–14 (1987)

    Article  ADS  Google Scholar 

  9. M. Soltani, M. Chaker, E. Haddad, R.V. Kruzelesky, J. Vac. Sci. Technol. A: Vac. Surf. Films 24, 612–617 (2006)

    Article  ADS  Google Scholar 

  10. G.J. Kovacs, D. Burger, I. Skorupa, H. Reuther, R. Heller, H. Schmidt, J. Appl. Phys. 109, 063708 (2011)

    Article  ADS  Google Scholar 

  11. M. Panagopoulou, E. Gagaoudakis, N. Boukos, E. Aperathitis, G. Kiriakidis, D. Tsoukalas, Y.S. Raptis, Sol. Energy Mater. Sol. Cells 157, 1004–1010 (2016)

    Article  Google Scholar 

  12. J.R. Liang, Z.B. Yang, Y.R. Zhao, J.B. Guo, Mater. Res. Express 6, 116432 (2019)

    Article  ADS  Google Scholar 

  13. X. Deng, Y.F. Zhao, N. Zhong, F.Y. Yue, R. Huang, H. Peng, X.D. Tang, P.H. Xiang, Y.H. Chu, C.G. Duan, Adv. Electron. Mater. 6, 1900742 (2020)

    Article  Google Scholar 

  14. M.D. Zhu, H.J. Qi, B. Wang, H. Wang, D.P. Zhang, W.Z. Lv, RSC Adv. 8, 28953–28959 (2018)

    Article  ADS  Google Scholar 

  15. D.P. Zhang, M.D. Zhu, Y. Liu, K. Yang, G.X. Liang, Z.H. Zheng, X.M. Cai, P. Fan, J. Alloys Compd. 659, 198–202 (2016)

    Article  Google Scholar 

  16. M.Q. Kong, K. Egbo, C.P. Liu, M.K. Hossain, C.Y. Tso, C. Chao, K.M. Yu, J. Alloys Compd. 833, 155053 (2020)

    Article  Google Scholar 

  17. D.H. Qiu, Q.Y. Wen, Q.H. Yang, Z. Chen, Y.L. Jing, H.W. Zhang, Mater. Sci. Semicond. Process. 27, 140–144 (2014)

    Article  Google Scholar 

  18. H. Kim, N.S. Bingham, N.A. Charipar, A. Pique, AIP Adv. 7, 105116 (2017)

    Article  ADS  Google Scholar 

  19. S. Long, X. Cao, G. Sun, N. Li, T. Chang, Z. Shao, P. Jin, Appl. Surf. Sci. 441, 764–772 (2018)

    Article  ADS  Google Scholar 

  20. Y. Dang, L. Zhao, J. Liu, Ceram. Int. 46, 9079–9085 (2020)

    Article  Google Scholar 

  21. G. Sun, X. Cao, X. Gao, S. Long, M. Liang, P. Jin, Appl. Phys. Lett. 109, 143903 (2016)

    Article  ADS  Google Scholar 

  22. H. Zong, C. Geng, C. Zhang, H. Liu, J. Wu, Z. Yu, G. Cao, C. Kang, M. Li, Appl. Surf. Sci. 487, 138–145 (2019)

    Article  ADS  Google Scholar 

  23. H. Koo, H. You, K.E. Ko, O.J. Kwon, S.H. Chang, C. Park, Appl. Surf. Sci. 277, 237–241 (2013)

    Article  ADS  Google Scholar 

  24. S. Long, H. Zhou, S. Bao, Y. Xin, X. Cao, P. Jin, RSC Adv. 6, 106435–106442 (2016)

    Article  ADS  Google Scholar 

  25. J. Zheng, S. Bao, P. Jin, Nano Energy 11, 136–145 (2015)

    Article  Google Scholar 

  26. M.J. Miller, J. Wang, Sol. Energy Mater. Sol. Cells 154, 88–93 (2016)

    Article  Google Scholar 

  27. Q. Fan, F. Wang, H. Zhang, F. Zhang, Mol. Simul. 34, 1099–1103 (2008)

    Article  Google Scholar 

  28. S. Westman, I. Lindqvist, B. Sparrman, G.B. Nielsen, H. Nord, A. Jart, Acta Chem. Scand. 15, 217–217 (1961)

    Article  Google Scholar 

  29. G. Wyszecki, W.S. Stiles, Phys. Today 21, 83–84 (1968)

    Article  Google Scholar 

  30. A. Standard ASTM Standard G173–03: Standard tables for reference solar spectral irradiances: Direct normal and hemispherical on 37 tilted surface. Annual Book of ASTM Standards (American Society for Testing and Materials, West Conshohocken, PA. USA) 14, (2008)

  31. X. Yu, J. Jiang, J. Environ. Manage. 245, 447–453 (2019)

    Article  Google Scholar 

  32. D.P. Zhang, K. Yang, Y. Li, Y. Liu, M. Zhu, A. Zhong, X. Cai, P. Fan, W. Lv, J. Alloys Compd. 684, 719–725 (2016)

    Article  Google Scholar 

  33. R.A. Aliev, V.N. Andreev, V.A. Klimov, V.M. Lebedev, S.E. Nikitin, E.I. Terukov, E.B. Shadrin, Tech. Phys. 50, 754–757 (2005)

    Article  Google Scholar 

  34. L. Kang, Y. Gao, Z. Zhang, J. Du, C. Cao, Z. Chen, H. Luo, J. Phys. Chem. C 114, 1901–1911 (2010)

    Article  Google Scholar 

  35. F. Beteille, L. Mazerolles, J. Livage, Mater. Res. Bull. 34, 2177–2184 (1999)

    Article  Google Scholar 

  36. Z.J. Zhao, Y. Liu, D. Wang, C. Ling, Q. Chang, J. Li, Y. Zhao, H. Jin, Sol. Energy Mater. Sol. Cells 209, 110443 (2020)

    Article  Google Scholar 

  37. H.H. Hou, X.L. Sun, Y.M. Shen, J.D. Shao, Z.X. Fan, K. Yi, Acta Phys. Sin. 55, 3124 (2006)

    Article  Google Scholar 

  38. Y.Q. Pan, Y. Shi, J. Xi’an Technol. University 30, 1 (2010)

    MathSciNet  Google Scholar 

  39. S.Y. Li, G.A. Niklasson, C.G. Granqvist, Thin Solid Films 520, 3823–3828 (2012)

    Article  ADS  Google Scholar 

  40. M.D. Zhu, H.J. Qi, B. Wang, H. Wang, T.R. Guan, D.P. Zhang, J. Alloys Compd. 740, 844–851 (2018)

    Article  Google Scholar 

  41. N. Wang, S. Liu, X.T. Zeng, S. Magdassi, Y. Long, J. Mater. Chem. C 3, 6771–6777 (2015)

    Article  Google Scholar 

  42. Z. Wen, Y. Ke, C. Feng, S. Fang, M. Sun, X. Liu, Y. Long, Adv. Mater. Interfaces 8, 2001606 (2020)

    Article  Google Scholar 

  43. T. Chang, X. Cao, N. Li, S. Long, Y. Zhu, J. Huang, H. Luo, P. Jin, Matter 1, 734–744 (2019)

    Article  ADS  Google Scholar 

  44. N. Maximous, G. Nakhla, W. Wan, K. Wong, J. Membr. Sci. 352, 222–230 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the funds supported by the National Natural Science Foundation of China (11304081, 61705062), the Natural Science Foundation of Henan province (212300410348), Henan province key research and development and promotion special (192102310208, 202102310228 and 212102310099) and the Fundamental Research Funds for the Universities of Henan Province (NSFRF210343).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Hu or Ming Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, H., Zhou, D., Yan, L. et al. ZrO2/VO2/ZrO2 sandwich structure with improved optical properties and weatherability for smart window application. Appl. Phys. A 127, 472 (2021). https://doi.org/10.1007/s00339-021-04623-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04623-5

Keywords

Navigation