Skip to main content

Advertisement

Log in

Erbium (III)- and Terbium (III)-containing silicate-based bioactive glass powders: physical, structural and nuclear radiation shielding characteristics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Erbium (III)- and terbium (III)-containing (1, 3 and 5 wt%) silicate-based bioactive glass powders were synthesized using sol–gel method. Their structural and physical properties were investigated. Radiation attenuation properties of the prepared glass samples were examined using Monte Carlo simulations. The photon transmission properties of the prepared bioactive specimens were obtained via Phy-X PSD program and FLUKA simulation. Results showed that all of the glasses synthesized in the study were amorphous. The true density values were measured in the range of 2.57–2.68 g/cm3. Simulation studies revealed that the lowest neutron cross section was observed for the pure 13–93 bioactive glass sample and the maximum neutron cross section was noted for the prepared bioactive specimens of 5% Er and 5% Tb. Bioactive glass powders synthesized in the study have potential to be used as radiation shielding material in tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Xuanxuan Zhang, Shouping Zhu, Yang Li, Yonghua Zhan, Xueli Chen, Fei Kang, Jing Wang, Xu. Cao, Gamma rays excited radioluminescence tomographic imaging. BioMed. Eng. OnLine (2018). https://doi.org/10.1186/s12938-018-0480-x

    Article  Google Scholar 

  2. George Wypych, Functional fillers special physical properties, Chaper 3, in Functional Fillers, Chemical Composition, Morphology, Performance, Applications, ChemTec Publishing, 2018, 43–57

  3. M.A.AL-Rajhi, HajoIdriss, Abdul-Aziz S.Alaamer, A.M.El-Khayatt, Gamma / neutron radiation shielding, structural and physical characteristics of iron slag nanopowder, Applied Radiation and Isotopes, 2021, 109606, https://doi.org/10.1016/j.apradiso.2021.109606.

  4. Wu. Yin, Yi. Cao, Wu. Ying, D. Li, Mechanical properties and gamma-ray shielding performance of 3D-printed poly-ether-ether-ketone/tungsten composites. Materials 13, 4475 (2020). https://doi.org/10.3390/ma13204475

    Article  ADS  Google Scholar 

  5. H. Issard, Radiation protection by shielding in packages for radioactive materials, Chapter 9, in Safe and Secure Transport and Storage of Radioactive Materials, Woodhead Publishing, 2015, 123–140.

  6. P. Kaura, D. Singhb, T. Singh, Gamma rays shielding and sensing application of some rare earth doped lead-alumino-phosphate glasses. Radiat. Phys. Chem. 144, 336–343 (2018)

    Article  ADS  Google Scholar 

  7. S. Ruengsri, Radiation shielding properties comparison of Pb-based silicate, borate, and phosphate glass matrices. Sci. Technol. Nucl. Install. (2014). https://doi.org/10.1155/2014/218041

    Article  Google Scholar 

  8. M.N. Rahaman, D.E. Day, S.B. Bal, Q. Fu, S.B. Jung, L.F. Bonewald, A.P. Tomsia, Bioactive glass in tissue engineering. Acta. Biomater. 7(6), 2355–2373 (2011)

    Article  Google Scholar 

  9. J.R. Jones, Review of bioactive glass: from Hench to hybrids. Acta. Biomater. 9, 4457–4486 (2013)

    Article  Google Scholar 

  10. L.C. Gerhardt, A.R. Boccaccini, Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Adv. Mater. 3, 3867–3910 (2010)

    Google Scholar 

  11. M.S. Amani Alalawi, Y.S. Rammah. Al-Buriahi, Radiation shielding properties of PNCKM bioactive glasses at nuclear medicine energies. Ceram. Int. 46(10), 15027–15033 (2020)

    Article  Google Scholar 

  12. N. Al-Harbi, Y. Al-Hadeethi, Ahmed samir bakry, mechanical and radiation shielding features of bioactive glasses: SiO2–Na2O–CaO–P2O5–B2O3 for utilization in dental applications. J. Non-Cryst. Solids 552, 120489 (2021)

    Article  Google Scholar 

  13. O. Kilicoglu, H.O. Tekin, Bioactive glasses with TiO2 additive: behavior characterization against nuclear radiation and determination of buildup factors. Ceram. Int. 46, 10779–10787 (2020)

    Article  Google Scholar 

  14. O. Kilicoglu, H.O. Tekin, Bioactive glasses and direct effect of increased K2O additive for nuclear shielding performance: a comparative investigation. Ceram. Int. 46(2), 1323–1333 (2020)

    Article  Google Scholar 

  15. H.O. Tekin, E. Kavaz, E.E. Altunsoy, O. Kilicoglu, O. Agar, T.T. Erguzel, M.I. Sayyed, An extensive investigation on gamma-ray and neutron attenuation parameters of cobalt oxide and nickel oxide substituted bioactive glasses. Ceram. Int. 45, 9934–9949 (2019). https://doi.org/10.1016/j.ceramint.2019.02.036

    Article  Google Scholar 

  16. O. Agar, E. Kavaz, E.E. Altunsoy, O. Kilicoglu, H.O. Tekin, M.I. Sayyed, T.T. Erguzel, N. Tarhan, Results Phys. 13, 102277 (2019)

    Article  Google Scholar 

  17. D. Yılmaz, B. Aktaş, Ş Yalçın, M. Albaşkara, Erbium oxide and Cerium oxide-doped borosilicate glasses as radiation shielding material. Radiat. Eff. Defects Solids 175, 458–471 (2020). https://doi.org/10.1080/10420150.2019.1674301

    Article  ADS  Google Scholar 

  18. Z.A. Alrowaili, T.A. Taha, M.I. Brahim, K.M.A. Saron, Synthesis, optical absorption and radiation shielding performance of sodium zinc borate-Er2O3 glasses. J. Electr. Mater. 50(3), 1102 (2021)

    Article  ADS  Google Scholar 

  19. H.O. Tekin, S.A.M. Issa, E. Kavaz, E.E. Altunsoy Guclu, The direct effect of Er2O3 on bismuth barium telluro borate glasses for nuclear security applications. Mater. Res. Express. 6, 115212 (2019). https://doi.org/10.1088/2053-1591/ab4cb5

    Article  ADS  Google Scholar 

  20. A.M. Deliormanlı, B. Rahman, S. Oguzlar, K. Ertekin, Structural and luminescent properties of Er3+ and Tb3+-doped sol-gel based bioactive glass powders and electrospun nanofibers. J. Mater. Sci. (2021). https://doi.org/10.1007/s10853-021-06203-7

    Article  Google Scholar 

  21. S. Oguzlar, M. Zeyrek Ongun, A.M. Deliormanlı, Improvement of optical properties of one-dimensional CaAl12O19: Mn4+ phosphor via Er3+-and Tb3+-doped bioactive glass powders. Opt. Mater. 117, (2021). https://doi.org/10.1016/j.optmat.2021.111201

    Article  Google Scholar 

  22. A.M. Deliormanlı, M. Yıldırım, Sol-gel synthesis of 13–93 bioactive glass powders containing therapeutic agents. J. Aus. Ceram. Soc. 52(2), 9–19 (2016)

    Google Scholar 

  23. G. Luo, Y. Ma, X. Cui, L. Jiang, M. Wu, Y. Hu, Y. Luo, H. Pana, C. Ruan, 13–93 bioactive glass/alginate composite scaffolds 3D printed under mild conditions for bone regeneration. RSC Adv. 7, 11880–11889 (2017)

    Article  ADS  Google Scholar 

  24. A.R. Boccaccini, Q. Chen, L. Lefebvre, L. Gremillard, J. Chevalier, Sintering, crystallisation and biodegradation behaviour of Bioglasss-derived glass–ceramics. Faraday Discuss. 136, 27–44 (2007)

    Article  ADS  Google Scholar 

  25. L.G.P. Moraes, R.S.F. Rocha, Lívia maluf menegazzo, eudes borges de araújo, keizo yukimito, joão carlos silos moraes, infrared spectroscopy: a tool for determination of the degree of conversion in dental composites. J. Appl. Oral Sci. 16(2), 145–149 (2008)

    Article  Google Scholar 

  26. A. Ayral, J. Phalippou, T. Woignier, Skeletal density of silica aerogels determined by helium pycnometry. J Mater Sci 27, 1166–1170 (1992). https://doi.org/10.1007/BF01142014

    Article  ADS  Google Scholar 

  27. N.N. Razali, I.S. Mustafa, N.Z.N. Azman, H.M. Kamari, A.A. Rahman, K. Rosli, N.S. Taib, N.A. Tajuddin, The physical and optical studies of erbium doped borosilicate glass. J. Phys. Conf. Series 1083, 012004 (2018)

    Article  Google Scholar 

  28. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X / PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020). https://doi.org/10.1016/j.radphyschem.2019.108496

    Article  Google Scholar 

  29. Berger, M.J., Hubbell, J.H., Seltzer, S.M., Chang, J., Coursey, J.S., Sukumar, R., Zucker, D.S., and Olsen, K. (2010), XCOM: Photon Cross Section Database (version 1.5). [Online] Available: http://physics.nist.gov/xcom [2021, February 10]. National Institute of Standards and Technology, Gaithersburg, MD.

  30. T.T. Böhlen, F. Cerutti, M.P.W. Chin, A. Fassò, A. Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G. Smirnov, V. Vlachoudis, The FLUKA Code: Developments and Challenges for High Energy and Medical ApplicationsNuclear Data Sheets 120, 211–214 (2014)

    Google Scholar 

  31. A. El-Denglawey, Shams A.M.. Issa, Yasser B. Saddeek, M.A. Wiam Elshami, Reda Elsaman Sayed, N. Tarhan, H.O. Tekin, Mechanical, structural and nuclear radiation shielding competencies of some tellurite glasses reinforced with molybdenum trioxide. Physica Scripta 96, 045702 (2021). https://doi.org/10.1088/1402-4896/abe1f8

    Article  ADS  Google Scholar 

  32. Gokhan Kilic, Shams A.M.. Issa, O. Erkan Ilik, U. Gokhan. Kilicoglu, R. El-Mallawany. Issever, H.O. Bashar Issa, Tekin. , Physical, thermal, optical, structural and nuclear radiation shielding properties of Sm2O3 reinforced borotellurite glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.10.194

    Article  Google Scholar 

  33. H.O. Tekin, L.R. P. Kassab, Shams A.M. Issa, Camila Dias da Silva Bordon, M.S. Al-Buriahi, Filipe de Oliviera Pereira Delboni, Gokhan Kilic, Evellyn Santos Magalhaes. Structural and physical characterization study on synthesized tellurite (TeO2) andgermanate (GeO2) glass shields using XRD, Raman spectroscopy, FLUKA and PHITS. Optical Materials 110 (2020) 110533. https://doi.org/10.1016/j.optmat.2020.110533

  34. H.O. Tekin, Shams A.M.. Issa, K.A. Mahmoud, F.I. El-Agawany, Y.S. Rammah, G. Susoy, M.S. Al-Buriahi, Mohamed M. Abuzaid, I. Akkurt, Nuclear radiation shielding competences of barium (Ba) reinforced borosilicate glasses. Emerg. Mater. Res. 9(4), 1–12 (2020). https://doi.org/10.1680/jemmr.20.00185

    Article  Google Scholar 

  35. Shams AM. Issa, L.R.P. Kassab, G. Susoy, M.V.M. Nishimura, G.R. da Silva Mattos, C.D.S. Bordon, H.O. Tekin, Fabrication, optical characteristic, and nuclear radiation shielding properties of newly synthesised PbO–GeO2 glasses. Appl. Phys. A 126, 748 (2020). https://doi.org/10.1007/s00339-020-03928-1

    Article  ADS  Google Scholar 

  36. A.M. Shams, H.O. Issa, T.T. Tekin, G. Susoy. Erguzel, The effective contribution of PbO on nuclear shielding properties of xPbO-(100–x)P2O5 glass system: a broad range investigation. Appl. Phys. A 125, 640 (2019). https://doi.org/10.1007/s00339-019-2941-x

    Article  ADS  Google Scholar 

  37. Shams A.M.. Issa, H.O. Tekin, The multiple characterization of gamma, neutron and proton shielding performances of xPbO-(99–x)B2O3–Sm2O3 glass system. Ceram. Int. 45, 23561–23571 (2019). https://doi.org/10.1016/j.ceramint.2019.08.065

    Article  Google Scholar 

  38. H.O. Tekin, L.R.P. Kassab, Shams A.M.. Issa, C.D.S. Bordon, E.E. Altunsoy Guclu, G.R. da Silva Mattos, Ozge Kilicoglu, Synthesis and nuclear radiation shielding characterization of newly developed germanium oxide and bismuth oxide glasses. Ceram. Int. 45, 24664–24674 (2019). https://doi.org/10.1016/j.ceramint.2019.08.204

    Article  Google Scholar 

  39. G. Susoy, E.E. Altunsoy Guclu, M. Ozge Kilicoglu, M.S. Kamislioglu, M.M. Al-Buriahi, H.O. Tekin. Abuzaid, The impact of Cr2O3 additive on nuclear radiation shielding properties of LiF–SrO–B2O3 glass system. Mater. Chem. Phys. 242, 122481 (2020). https://doi.org/10.1016/j.matchemphys.2019.122481

    Article  Google Scholar 

  40. I.S. Mahmoud, S.A.M. Issa, Y.B. Saddek, H.O. Tekin, T. Ozge Kilicoglu, M.I. Alharbi, T.T.E. Sayyed, R. Elsaman, Gamma, neutron shielding and mechanical parameters for vanadium lead vanadate glasses. Ceram. Int. 45, 14058–14072 (2019). https://doi.org/10.1016/j.ceramint.2019.04.105

    Article  Google Scholar 

  41. O. Nakhaei, N. Shahtahmassebi, M. Rezaee Roknabadi et al., Co-electrospinning fabrication and study of structural and electromagnetic interference-shielding effectiveness of TiO2/SiO2 core–shell nanofibers. Appl. Phys. A 122, 537 (2016). https://doi.org/10.1007/s00339-016-0072-1

    Article  ADS  Google Scholar 

  42. M. Donya, M. Radford, A. ElGuindy, D. Firmin, M.H. Yacoub, Radiation in medicine: origins, risks and aspirations. Glob. Cardiol Sci. Pract. 2014(4), 437–448 (2014). https://doi.org/10.5339/gcsp.2014.57

    Article  Google Scholar 

Download references

Acknowledgements

The financial support provided by The Scientific and Technological Research Council of Turkey (TUBITAK) is acknowledged (Grant No: 119M934).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. O. Tekin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deliormanli, A.M., Issa, S.A.M., Al-Buriahi, M.S. et al. Erbium (III)- and Terbium (III)-containing silicate-based bioactive glass powders: physical, structural and nuclear radiation shielding characteristics. Appl. Phys. A 127, 463 (2021). https://doi.org/10.1007/s00339-021-04615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04615-5

Keywords

Navigation