Skip to main content
Log in

Effect of donor dopants on the properties of flux grown PZN-PT single crystals

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Rare-earth Nd-doped lead zinc niobate-lead titanate (Nd:PZN-PT) and W-doped lead zinc niobate-lead titanate (W:PZN-PT) single crystals have been grown by self-flux technique and their dielectric, ferroelectric and piezoelectric properties have been investigated. Pure perovskite phases were observed, and lattice parameters were obtained by Rietveld refinement. Diffuse phase transition and frequency dispersive phenomena was observed in the dielectric peaks confirming the enhancement of relaxor behaviour for doped crystals. Variation of dielectric constant (ε), AC conductivity and piezoelectric charge coefficient (d33) as a result of doping is investigated in detail. From the hysteresis behaviour, it was evident that a simple domain switching mechanism was observed for doped crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.L. Polla, L.F. Francis, MRS Bull. 2, 59 (1996)

    Article  Google Scholar 

  2. J.F. Scott, Ferroelectric Memories (Springer, Berlin, 2000).

    Book  Google Scholar 

  3. C.T. Lin, B.W. Scanlan, J.D. Mcnell, J.S. Webb, L. Li, J. Matter Res. 7, 2546 (1992)

    Article  ADS  Google Scholar 

  4. S. Yokayana, Y. Ito, H. Ishihara, K. Hamada, S. Ohnishi, J. Kudo, K. Sakiyama, Jpn. J. Appl. Phys. 34, 767 (1995)

    Article  ADS  Google Scholar 

  5. N. Neumann, R. Kohler, G. Hofmann, Integrat. Ferro Electric. 6, 213 (1995)

    Article  Google Scholar 

  6. P. Ari-Gur, L. Benguigui, Solid State Commun. 15, 1077–1079 (1974)

    Article  ADS  Google Scholar 

  7. V.A. Isupov, Sov. Phys. Solid State 22, 98–101 (1980)

    Google Scholar 

  8. T. Kala, Phys. Status Solidi (a) 78, 277–282 (1983)

    Article  ADS  Google Scholar 

  9. A. Barbulescu, E. Barbulescu, D. Barb, Ferroelectrics 47, 221–230 (1983)

    Article  Google Scholar 

  10. G.H. Haertling, Piezoelectric and Electrooptic Ceramics (Marcel Dekker, New York, 1986), p. 157

    Google Scholar 

  11. E.F. Crawley, J. De Luis, AIAA J. 25, 1373–1385 (1987)

    Article  ADS  Google Scholar 

  12. Y. Sugawara, K. Onitsuka, S. Yoshikawa, Q. Xu, R.E. Newnham, K. Uchino, J. Am. Ceram. Soc. 75, 996–998 (1992)

    Article  Google Scholar 

  13. R.E. Newnham, G.R. Ruschau, Am. Ceram. Soc. Bull. 75, 51–62 (1996)

    Google Scholar 

  14. J.F. Tressler, S. Alkoy, R.E. Newnham, J. Electroceram. 2(4), 257–272 (1998)

    Article  Google Scholar 

  15. R.E. Newnham, S.K. Majumdar, R.E. Tressler, E.W. Miller, Functional Composites for Sensors and Actuators: Smart Materials (Pennsylvania, The Pennsylvania Academy of Science, 1998), pp. 259–275

    Google Scholar 

  16. R.E. Newnham, L.J. Bowen, K.A. Klicker, L.E. Cross, Mater. Eng. 2, 93–97 (1980)

    Google Scholar 

  17. J. Wallaschek, J. Intell. Mater. Syst. Struct. 6, 71–73 (1980)

    Article  Google Scholar 

  18. S.H. Chang, H.C. Wang, Sens. Actuators A 24, 239–244 (1990)

    Article  Google Scholar 

  19. S.B. Majumder, B. Roy, R.S. Katiyara, B. Krupanidhi, Appl. Phys. Lett. 79, 239 (2001)

    Article  ADS  Google Scholar 

  20. Y.D. Hou, M.K. Zhu, H. Wang, B. Wang, H. Yan, C.S. Tian, Mater. Sci. Eng. B 110, 27–31 (2004)

    Article  Google Scholar 

  21. W.Z. Zhu, A. Kholkin, P.Q. Mantas, J.L. Baptista, J. Mater. Sci. 36, 4089–4098 (2001)

    Article  ADS  Google Scholar 

  22. S.V. Rajasekaran, R. Jayavel, Solid State Commun. 143, 466–470 (2007)

    Article  ADS  Google Scholar 

  23. Bee Keen Gan, Kui Yao. Ceram. Int. 35, 2061–2067 (2009)

    Google Scholar 

  24. S. Priya, K. Uchino, Jpn. J. Appl. Phys. 42, 531–534 (2003)

    Article  ADS  Google Scholar 

  25. Y. Sato, S. Abe, R. Fujimura, H. Ono, K. Oda, T. Shimura, K. Kuroda, J. Appl. Phys. 96, 4852 (2004)

    Article  ADS  Google Scholar 

  26. Wu. Ming, H. Huang, W. Chu, L. Guo, L. Qiao, Xu. Jiayue, T.-Y. Zhang, J. Phys. Chem. C 114, 9955–9960 (2010)

    Article  Google Scholar 

  27. J. Rodriguez-Carjaval, Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the International Union of Crystallography Toulouse, 1990, p. 123

  28. L. Zhang, M. Dong, Z.G. Ye, Mater. Sci. Eng. B 78, 96–104 (2000)

    Article  Google Scholar 

  29. D.E. Cox, B. Noheda, G. Shirane, Y. Uesu, K. Fujishiro, Y. Yamada, Appl. Phys. Lett. 79, 400–402 (2001)

    Article  ADS  Google Scholar 

  30. Y. Uesu, Y. Yamada, K. Fujishiro, H. Tazawa, S. Enokido, J.M. Kiat, B. Dkhil, Ferroelectrics 217, 319–325 (1998)

    Article  Google Scholar 

  31. Y. Yamashita, Y. Hosono, K. Harada, Noboru Ichinose. Jpn. J. Appl. Phys. 39, 5593–5596 (2000)

    Article  ADS  Google Scholar 

  32. W.Z. Zhu, A. Kholkin, P.Q. Mantas, J.L. Baptista, Mater. Chem. Phys. 73, 62–69 (2002)

    Article  Google Scholar 

  33. K.M. Lee, H.M. Jang, W.J. Park, J. Mater. Res. 12, 1603–1613 (1997)

    Article  ADS  Google Scholar 

  34. X. Dai, Z. Xu, D. Viehland, Philos. Mag. B 70, 33 (1994)

    Article  ADS  Google Scholar 

  35. K. Uchino, S. Nomura, Ferroelectr. Lett. Sect. 44, 55–61 (1982)

    Article  Google Scholar 

  36. C. Ang, Z. Yu, L.E. Cross, Phys. Rev. B 62, 228–236 (2000)

    Article  ADS  Google Scholar 

  37. P. Moretti, F.M. Michel-Calendini, Phys. Rev. B 36, 3522–3527 (1987)

    Article  ADS  Google Scholar 

  38. J.C. Dyre, J. Appl. Phys. 64, 2456–2468 (1988)

    Article  ADS  Google Scholar 

  39. Q. Tan, J. Li, D. Viehland, Appl. Phys. Lett. 75, 418 (1999)

    Article  ADS  Google Scholar 

  40. Q. Tan, Z. Xu, D. Viehland, J. Mater. Res. 14, 465 (1999)

    Article  ADS  Google Scholar 

  41. G. Singh, I. Bhaumik, V.S. Tiwari, S. Ganesamoorthy, V.K. Wadhawan, Ferroelectrics 326, 37–41 (2005)

    Article  Google Scholar 

  42. E.-M. Anton, R. Edwin Garcia, T.S. Key, J.E. Blendell, K.J. Bowman, J. Appl. Phys. 105, 0241071–0241078 (2009)

    Article  Google Scholar 

  43. M.J. Haun, Ph.D. Dissertation, Pennsylvania State University, University Park, PA, USA, (1987)

  44. A. Pramanick, J.E. Daniels, J.L. Jonesw, J. Am. Ceram. Soc. 92, 2300–2310 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very much grateful for the kind support and valuable guidance by Dr. S. Ganesamoorthy, IGCAR, Kalpakkam for this work.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Srimathy.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srimathy, B., Kumar, J. Effect of donor dopants on the properties of flux grown PZN-PT single crystals. Appl. Phys. A 127, 447 (2021). https://doi.org/10.1007/s00339-021-04609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04609-3

Keywords

Navigation