Skip to main content
Log in

Rietveld refined structural, morphological, Raman and magnetic investigations of superparamagnetic Zn–Co nanospinel ferrites prepared by cost-effective co-precipitation route

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zn2+-substituted cobalt ferrites (Co-ferrite) having the chemical formula Co1−xZnxFe2O4 (x = 0.0, 0.5 and 1.0) were fabricated by a co-precipitated wet chemical route. The analysis of weight loss percentage with spinel phase development and evaluation of sintering temperature of prepared samples were studied by applying the TG–DTA technique. Structurally refined XRD patterns of the prepared samples revealed the phase purity and cubic spinel structure with the Fd-3m space group. The fractional atomic positions and Rietveld refinement factors were estimated from Rietveld refined XRD pattern, and also, other variations of structural parameters with zinc substitution have been calculated from XRD data. Both the Rietveld refinement and W–H method were employed to calculate the crystallite size, and both of them presented the same calculated result. The variation in the shape of particles and average particle size with Zn2+ substitution in Co-ferrite was evaluated from the FE-SEM technique. The formation of cubic spinel structure and change in the modes of vibrations with respect to Zn concentration in Co-ferrite of all samples were observed from the best peak-fitted Raman spectra. All the magnetic properties decreased with increasing concentration of zinc investigated from M–H loops which were obtained with the application of the VSM technique. ZFC–FC curve reveals that the blocking temperature of Co-ferrite samples decreases with increasing Zn concentration. It is possible to modulate or adjust the magnetic properties of Co-ferrite nanoparticles by Zn2+ doping as a favorable material for biomedical applications such as drug delivery, magnetic hyperthermia and magnetic resonance imaging (MRI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.K. Patra et al., Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16(1), 71 (2018)

    Article  Google Scholar 

  2. A. Minnich et al., Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2(5), 466–479 (2009)

    Article  Google Scholar 

  3. J.H. Belo et al., Magnetocaloric materials: from micro-to nanoscale. J. Mater. Res. 34(1), 134–157 (2019)

    Article  ADS  Google Scholar 

  4. H. Heinz et al., Nanoparticle decoration with surfactants: molecular interactions, assembly, and applications. Surf. Sci. Rep. 72(1), 1–58 (2017)

    Article  ADS  Google Scholar 

  5. S.R. Patade et al., Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram. Int. 46(16), 25576–25583 (2020)

    Article  Google Scholar 

  6. S.A. Jadhav, S.B. Somvanshi, M.V. Khedkar, S.R. Patade, K.M. Jadhav, Magneto-structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: visible light-enabled active photodegradation of rhodamine B. J. Mater. Sci.: Mater. Electron. 31, 11352–11365 (2020)

    Google Scholar 

  7. Sun, J. Z., Current-induced magnetic switching device and memory including the same. 2001, Google Patents

  8. E.R. Kumar et al., Synthesis of Mn substituted CuFe2O4 nanoparticles for liquefied petroleum gas sensor applications. Sens. Actuators B Chem. 191, 186–191 (2014)

    Article  Google Scholar 

  9. H. Shao et al., Magnetic nanoparticles and microNMR for diagnostic applications. Theranostics 2(1), 55 (2012)

    Article  Google Scholar 

  10. S.B. Somvanshi et al., Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): thermal, structural, spectral, optical and physisorption analysis. Ceram. Int. 46(7), 8640–8650 (2020)

    Article  Google Scholar 

  11. A.N. Birgani, M. Niyaifar, A. Hasanpour, Study of cation distribution of spinel zinc nano-ferrite by X-ray. J. Magn. Magn. Mater. 374, 179–181 (2015)

    Article  ADS  Google Scholar 

  12. M. Srivastava et al., Influence of pH on structural morphology and magnetic properties of ordered phase cobalt doped lithium ferrites nanoparticles synthesized by sol–gel method. Mater. Sci. Eng. B 175(1), 14–21 (2010)

    Article  Google Scholar 

  13. M. Houshiar et al., Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: a comparison study of size, structural, and magnetic properties. J. Magn. Magn. Mater. 371, 43–48 (2014)

    Article  ADS  Google Scholar 

  14. K. Sinkó et al., Liquid-phase syntheses of cobalt ferrite nanoparticles. J. Nanopart. Res. 14(6), 894 (2012)

    Article  ADS  Google Scholar 

  15. L.C. Sonia, M. Victory, S. Phanjoubam, Effect of synthesis technique on thestructural, electrical and magnetic properties ofzinc nanoferrite. Int. J. Sci. Eng. Res. 8(5), 5–10 (2017)

    Google Scholar 

  16. Z. Wang et al., A facile co-precipitation synthesis of robust FeCo phosphate electrocatalysts for efficient oxygen evolution. Electrochim. Acta 264, 244–250 (2018)

    Article  ADS  Google Scholar 

  17. K. Maaz et al., Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. J. Magn. Magn. Mater. 321(12), 1838–1842 (2009)

    Article  ADS  Google Scholar 

  18. V.S. Kiran, S. Sumathi, Comparison of catalytic activity of bismuth substituted cobalt ferrite nanoparticles synthesized by combustion and co-precipitation method. J. Magn. Magn. Mater. 421, 113–119 (2017)

    Article  ADS  Google Scholar 

  19. B. Toksha et al., Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol–gel auto combustion method. Solid State Commun. 147(11–12), 479–483 (2008)

    Article  ADS  Google Scholar 

  20. S. Jauhar et al., Tuning the properties of cobalt ferrite: a road towards diverse applications. RSC Adv. 6(100), 97694–97719 (2016)

    Article  ADS  Google Scholar 

  21. M.M. Naik et al., Effect of aluminium doping on structural, optical, photocatalytic and antibacterial activity on nickel ferrite nanoparticles by sol–gel auto-combustion method. J. Mater. Sci. Mater. Electron. 29(23), 20395–20414 (2018)

    Article  Google Scholar 

  22. M. Namdeo et al., Magnetic nanoparticles for drug delivery applications. J. Nanosci. Nanotechnol. 8(7), 3247–3271 (2008)

    Article  Google Scholar 

  23. H. Yun, Synthesis and characterization of transition metal based metal oxide and metallic nanocrystals for AC magnetic devices and catalysis. Synthesis 1, 1–2015 (2015)

    Google Scholar 

  24. P. Coppola et al., Hydrothermal synthesis of mixed zinc–cobalt ferrite nanoparticles: structural and magnetic properties. J. Nanopart. Res. 18(5), 138 (2016)

    Article  ADS  Google Scholar 

  25. H. Shokrollahi, Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids. Mater. Sci. Eng., C 33(5), 2476–2487 (2013)

    Article  Google Scholar 

  26. M.B. Ali et al., Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method. J. Magn. Magn. Mater. 398, 20–25 (2016)

    Article  ADS  Google Scholar 

  27. H. Kaur et al., Structural, thermal and magnetic investigations of cobalt ferrite doped with Zn2+ and Cd2+ synthesized by auto combustion method. J. Magn. Magn. Mater. 474, 505–511 (2019)

    Article  ADS  Google Scholar 

  28. B.J. Rani et al., Pure and cobalt-substituted zinc-ferrite magnetic ceramics for supercapacitor applications. Appl. Phys. A 124(7), 1–12 (2018)

    Article  ADS  Google Scholar 

  29. K. Anu, J. Hemalatha, Magnetic and electrical conductivity studies of zinc doped cobalt ferrite nanofluids. J. Mol. Liq. 284, 445–453 (2019)

    Article  Google Scholar 

  30. R.S. Yadav et al., Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered Co1−xZnxFe2O4 (x= 0.0, 0.5) spinel ferrite nanoparticles. J. Magn. Magn. Mater. 447, 48–57 (2018)

    Article  ADS  Google Scholar 

  31. S. Ansari et al., Cobalt nanoparticles for biomedical applications: facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Appl. Surf. Sci. 414, 171–187 (2017)

    Article  ADS  Google Scholar 

  32. A. Hadela et al., Novel reusable functionalized magnetic cobalt ferrite nanoparticles as oil adsorbents. Adsorpt. Sci. Technol. 38(5–6), 168–190 (2020)

    Article  Google Scholar 

  33. M.M. Naik et al., Green synthesis of zinc doped cobalt ferrite nanoparticles: structural, optical, photocatalytic and antibacterial studies. Nano-Struct. Nano-Objects 19, 100322 (2019)

    Article  Google Scholar 

  34. B. Peeples et al., Structural, stability, magnetic, and toxicity studies of nanocrystalline iron oxide and cobalt ferrites for biomedical applications. J. Nanopart. Res. 16(2), 2290 (2014)

    Article  ADS  Google Scholar 

  35. E. Bagherzadeh, H.R.M. Hosseini, J. Khakzadian, Synthesis of magnetic mesoporous nanocomposites: a promising candidate for diagnostic and therapeutic biomedical applications. Mater. Chem. Phys. 167, 201–208 (2015)

    Article  Google Scholar 

  36. J.S. Kounsalye et al., Rietveld, cation distribution and elastic investigations of nanocrystalline Li0. 5+ 0.5 xZrxFe2. 5-1.5 xO4 synthesized via sol–gel route. Phys. B Condens. Matter 547, 64–71 (2018)

    Article  ADS  Google Scholar 

  37. D. Jnaneshwara et al., Effect of zinc substitution on the nanocobalt ferrite powders for nanoelectronic devices. J. Alloy. Compd. 587, 50–58 (2014)

    Article  Google Scholar 

  38. M. Irfan et al., Structural and magnetic properties of Fe3Ga alloy nanowires: effect of post annealing treatment. J. Alloy. Compd. 691, 1–7 (2017)

    Article  Google Scholar 

  39. J.S. Kounsalye et al., Influence of Ti 4+ ion substitution on structural, electrical and dielectric properties of Li 0.5 Fe 2.5 O 4 nanoparticles. J. Mater. Sci. Mater. Electron. 28(22), 17254–17261 (2017)

    Article  Google Scholar 

  40. V. Vinayak et al., Structural, microstructural, and magnetic studies on magnesium (Mg 2+)-substituted CoFe 2 O 4 nanoparticles. J. Supercond. Novel Magn. 29(4), 1025–1032 (2016)

    Article  Google Scholar 

  41. D. Nath, F. Singh, R. Das, X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles-a comparative study. Mater. Chem. Phys. 239, 122021 (2020)

    Article  Google Scholar 

  42. S. Gul et al., Al-substituted zinc spinel ferrite nanoparticles: preparation and evaluation of structural, electrical, magnetic and photocatalytic properties. Ceram. Int. 46(9), 14195–14205 (2020)

    Article  Google Scholar 

  43. W.L. de Almeida et al., Study of structural and optical properties of ZnO nanoparticles synthesized by an eco-friendly tapioca-assisted route. Mater. Chem. Phys. 258, 123926 (2021)

    Article  Google Scholar 

  44. L. Kumar, P. Kumar, M. Kar, Cation distribution by Rietveld technique and magnetocrystalline anisotropy of Zn substituted nanocrystalline cobalt ferrite. J. Alloy. Compd. 551, 72–81 (2013)

    Article  Google Scholar 

  45. M. Beyranvand, A. Gholizadeh, Structural, magnetic, elastic, and dielectric properties of Mn 0.3–x Cd x Cu 0.2 Zn 0.5 Fe 2 O 4 nanoparticles. J. Mater. Sci. Mater. Electron. 31(7), 5124–5140 (2020)

    Article  Google Scholar 

  46. R.S. Yadav et al., Magnetic properties of Co1−xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling. J. Magn. Magn. Mater. 378, 190–199 (2015)

    Article  ADS  Google Scholar 

  47. A.V. Humbe et al., Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J. Alloy. Compd. 691, 343–354 (2017)

    Article  Google Scholar 

  48. N. Sanpo, C.C. Berndt, J. Wang, Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol–gel methods. J. Appl. Phys. 112(8), 084333 (2012)

    Article  ADS  Google Scholar 

  49. N. Somaiah et al., Magnetic and magnetoelastic properties of Zn-doped cobalt-ferrites—CoFe2−xZnxO4 (x= 0, 0.1, 0.2, and 0.3). J. Magn Magn Mater 324(14), 2286–2291 (2012)

    Article  ADS  Google Scholar 

  50. D.D. Andhare et al., Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via Co-precipitation method. Phys. B Conden. Matter 583, 412051 (2020)

    Article  Google Scholar 

  51. G. Aravind, M. Raghasudha, D. Ravinder, Synthesis, characterization and FC–ZFC magnetization studies of cobalt substituted lithium nano ferrites. J. Magn. Magn. Mater. 378, 278–284 (2015)

    Article  ADS  Google Scholar 

  52. K. Praveena, K. Sadhana, Ferromagnetic properties of Zn substituted spinel ferrites for high frequency applications. Int. J. Sci. Res. Publ. 5(4), 1–21 (2015)

    Google Scholar 

  53. W. Mohamed et al., Impact of Co2+ substitution on microstructure and magnetic properties of coxzn1-xfe2o4 nanoparticles. Nanomaterials 9(11), 1602 (2019)

    Article  Google Scholar 

  54. S.I. Ahmad et al., Dielectric, impedance, AC conductivity and low-temperature magnetic studies of Ce and Sm co-substituted nanocrystalline cobalt ferrite. J. Magn. Magn. Mater. 492, 165666 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The author Deepali D. Andhare acknowledges Chhatrapati Shahu Maharaj Research, Training and Human Development Institute (SARTHI) Pune, Government of Maharashtra, for the financial support under CMSRF-2019. The author is thankful to Dr. Alok Banerjee and Dr. Vasant Sathe Scientists UGC-DAE Consortium for Scientific Research, Indore, India, for providing VSM measurement and Raman facilities, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Jadhav.

Ethics declarations

Conflict of interest

There are no conflicts of interest connected to the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andhare, D.D., Patade, S.R., Jadhav, S.A. et al. Rietveld refined structural, morphological, Raman and magnetic investigations of superparamagnetic Zn–Co nanospinel ferrites prepared by cost-effective co-precipitation route. Appl. Phys. A 127, 480 (2021). https://doi.org/10.1007/s00339-021-04603-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04603-9

Keywords

Navigation