Skip to main content
Log in

Dielectric function of sub-10 nanometer thick gold films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A smooth gold (Au) film with thickness below 10 nanometer (nm) is hard to fabricate as well as to accurately measure its thickness and the corresponding dielectric function. Here, we report 5.4, 6.6 and 7.5 nm thick continuous Au films prepared on Chromium (Cr) seed layer. The thickness and dielectric function of the Au films are obtained using spectroscopic ellipsometry and first principles calculation. From the fitting results of the ellipsometric parameters, the value of the real part of dielectric function (\(\varepsilon_{1}\)) is negative almost in the whole spectrum region indicating that the Au films are continuous. For the imaginary part of dielectric function (\(\varepsilon_{2}\)), it decreases with increasing of the Au film thickness because the surface electrons scattering decreases. Moreover, the calculated and measured results of 5.4, 6.6 and 7.5 nm thick Au films present a good agreement in the wavelength range from 400 to 1600 nm. From the results of the first principles calculation, both \(\varepsilon_{1}\) and \(\varepsilon_{2}\) decrease with increasing of the Au film thickness. These precise measurement and calculation results of dielectric function are beneficial to nano-photoelectronic devices design with sub-10 nm Au films involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y.G. Bi, Y.F. Liu, X.L. Zhang, D. Yin, W.Q. Wang, J. Feng, H.B. Sun, Adv. Opt. Mater. 7(6), 1800778 (2019)

    Article  Google Scholar 

  2. J. Yun, Adv. Funct. Mater. 27(18), 1606641 (2017)

    Article  Google Scholar 

  3. S. Link, P. Christopher, D.B. Ingram, Nat. Mater. 10(12), 911–921 (2011)

    Article  ADS  Google Scholar 

  4. J. Liu, H. He, D. Xiao, S. Yin, W. Ji, S. Jiang, D. Luo, B. Wang, Y. Liu, Materials 11(10), 1833 (2018)

    Article  ADS  Google Scholar 

  5. E.T. Hu, Q.Y. Cai, R.J. Zhang, Y.F. Wei, W.C. Zhou, S.Y. Wang, Y.X. Zheng, W. Wei, L.Y. Chen, Opt. Lett. 41(21), 4907–4910 (2016)

    Article  ADS  Google Scholar 

  6. D.I. Yakubovsky, A.V. Arsenin, Y.V. Stebunov, D.Y. Fedyanin, V.S. Volkov, Opt. Express 25(21), 25574–25587 (2017)

    Article  ADS  Google Scholar 

  7. D.I. Yakubovsky, Y.V. Stebunov, R.V. Kirtaev, G.A. Ermolaev, M.S. Mironov, S.M. Novikov, A.V. Arsenin, V.S. Volkov, Adv. Mater. Interfaces 6(13), 1900196 (2019)

    Article  Google Scholar 

  8. R.A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D.S. Ghosh, R. Yongsunthon, D.E. Baker, A. Rezikyan, F.J. García de Abajo, V. Pruneri, Nat. Photonics 13(5), 328–333 (2019)

    Article  ADS  Google Scholar 

  9. D. Dalacu, L. Martinu, J. Opt. Soc. Am. B 18(1), 85–92 (2001)

    Article  ADS  Google Scholar 

  10. H.U. Yang, J. D’Archangel, M.L. Sundheimer, E. Tucker, G.D. Boreman, M.B. Raschke, Phys. Rev. B 91(23), 235137 (2015)

    Article  ADS  Google Scholar 

  11. S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R.W. Ziolkowski, M. Miyawaki, K. Muralidharan, Opt. Express 21(10), 11827–18838 (2013)

    Article  ADS  Google Scholar 

  12. P.E. Blochl, Phys. Rev. B 50(24), 17953–17979 (1994)

    Article  ADS  Google Scholar 

  13. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  ADS  Google Scholar 

  14. P. Melpignano, C. Cioarec, R. Clergereaux, N. Gherardi, C. Villeneuve, L. Datas, Org. Electron. 11(6), 1111–1119 (2010)

    Article  Google Scholar 

  15. S.D. Yambem, A. Haldar, K.S. Liao, E.P. Dillon, A.R. Barron, S.A. Curran, Sol. Energy Mater. Sol. Cells 95(8), 2424–2430 (2011)

    Article  Google Scholar 

  16. CompleteEASE Data Analysis Manual Version 4.63, J. A. Woollam Co., Inc., Lincoln, NE, 2011, pp. 45.

  17. F. Zhang, R.J. Zhang, D.X. Zhang, Z.Y. Wang, J.P. Xu, Y.X. Zheng, L.Y. Chen, R.Z. Huang, Y. Sun, X. Chen, X.J. Meng, N. Dai, Appl. Phys. Express 6(12), 121101 (2013)

    Article  ADS  Google Scholar 

  18. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons Ltd, Chichester, 2007), p. 81

    Book  Google Scholar 

  19. B. Fodor, P. Kozma, S. Burger, M. Fried, P. Petrik, Thin Solid Films 617(A), 20–24 (2016)

    Article  ADS  Google Scholar 

  20. P.G. Etchegoin, E.C. Le Ru, M. Meyer, J. Chem. Phys. 125(16), 164705 (2006)

    Article  ADS  Google Scholar 

  21. E.T. Hu, R.J. Zhang, Q.Y. Cai, Z.Y. Wang, J.P. Xu, Y.X. Zheng, S.Y. Wang, Y.F. Wei, R.Z. Huang, L.Y. Chen, Appl. Phys. A Mater. 120(3), 875–879 (2015)

    Article  ADS  Google Scholar 

  22. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370–4379 (1972)

    Article  ADS  Google Scholar 

  23. M. Hoevel, B. Gompf, M. Dressel, Phys. Rev. B 81(3), 035402 (2010)

    Article  ADS  Google Scholar 

  24. M. Xu, J.Y. Yang, S.Y. Zhang, L.H. Liu, Phys. Rev. B 96(11), 115154 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (11974266, 62075174 and 11704293).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuo Deng or Min Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, Z., Deng, S., Li, L. et al. Dielectric function of sub-10 nanometer thick gold films. Appl. Phys. A 127, 437 (2021). https://doi.org/10.1007/s00339-021-04595-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04595-6

Keywords

Navigation