Skip to main content
Log in

Analytical solutions for rapid prediction of transient temperature field in powder-fed laser directed energy deposition based on different heat source models

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present paper aims to develop an effective analytical solution for laser directed energy deposition through powder feeding (LDED-PF). Three heat source models are introduced and compared to analytically describe the transient temperature field in the process. These models are known as point (1D) heat source, circular (2D) heat source, and semi-spherical (3D) heat source. For the validation tests, single-track deposition of Ti-5Al-5 V-5Mo-3Cr powder on Ti-6Al-4 V substrate is conducted at different laser powers, scanning speeds, and powder feed rates. The temperature field is validated using the measurement of melt-pool/deposit geometry. In order to improve the model fidelity, the enhanced thermal diffusivity and heat source radius are calibrated in terms of linear functions. It is found that the 2D Gaussian heat source model, which is in agreement with the underlying physics of the process, establishes a better match between the predicted and experimental data. The developed model only needs the basic information from the LDED-PF setup and material thermal properties to predict the thermal history and melt-pool geometry at different processing parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E. Toyserkani, A. Khajepour, S. Corbin, Laser Cladding (CRC Press, Boca Raton, 2004)

    Book  Google Scholar 

  2. Z. Tang, W. Liu, Y. Wang, K.M. Saleheen, Z. Liu, S. Peng, Z. Zhang, H. Zhang, Int. J. Adv. Manuf. Technol. 108, 3437 (2020)

    Article  Google Scholar 

  3. H. Wang, W. Liu, Z. Tang, Y. Wang, X. Mei, K.M. Saleheen, Z. Wang, H. Zhang, Opt. Eng. 59, 1 (2020)

    Google Scholar 

  4. H.L. Wei, T. Mukherjee, W. Zhang, J.S. Zuback, G.L. Knapp, A. De, T. DebRoy, Prog. Mater. Sci. 116, 100703 (2020)

    Article  Google Scholar 

  5. A.J. Pinkerton, J. Laser Appl. 27, S15001 (2015)

    Article  Google Scholar 

  6. N. Tamanna, R. Crouch, S. Naher, Opt. Lasers Eng. 122, 151 (2019)

    Article  Google Scholar 

  7. J. Ning, D.E. Sievers, H. Garmestani, S.Y. Liang, Appl. Phys. A 125, 496 (2019)

    Article  ADS  Google Scholar 

  8. J. Li, Q. Wang, P. Michaleris, E.W. Reutzel, A.R. Nassar, J. Manuf. Sci. Eng. 139, 1 (2017)

    Google Scholar 

  9. M. Ansari, A. Martinez-Marchese, Y. Huang, E. Toyserkani, Materialia 12, 100710 (2020)

    Article  Google Scholar 

  10. Y. Huang, M.B. Khamesee, E. Toyserkani, Addit. Manuf. 12, 90 (2016)

    Google Scholar 

  11. Y. Huang, M.B. Khamesee, E. Toyserkani, Opt. Laser Technol. 109, 584 (2019)

    Article  ADS  Google Scholar 

  12. J. Goldak, A. Chakravarti, M. Bibby, Metall. Trans. B 15, 299 (1984)

    Article  Google Scholar 

  13. S. Zhu, W. Chen, L. Ding, X. Zhan, and Q. Chen, Int. J. Adv. Manuf. Technol. 103, 3265 (2019)

  14. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd Edition (Oxford University Press, London, 1959)

    Google Scholar 

  15. A.J. Pinkerton, L. Li, J. Phys. D. Appl. Phys. 37, 1885 (2004)

    Article  ADS  Google Scholar 

  16. Z. Zhang, Y. Huang, A. Rani Kasinathan, S. Imani Shahabad, U. Ali, Y. Mahmoodkhani, E. Toyserkani, Opt. Laser. Technol. 109, 297 (2019)

    Article  ADS  Google Scholar 

  17. A. J. Pinkerton, R. Moat, K. Shah, L. Li, M. Preuss, and P. J. Withers, Int. Congr. Appl. Lasers Electro-Optics 2007, 1806 (2007)

  18. Z. Liu, H.C. Zhang, S. Peng, H. Kim, D. Du, W. Cong, Addit. Manuf. 30, 100848 (2019)

    Google Scholar 

  19. C. Lampa, A.F.H. Kaplan, J. Powell, C. Magnusson, J. Phys. D. Appl. Phys. 30, 1293 (1997)

    Article  ADS  Google Scholar 

  20. W. Zhang, C.-H. Kim, T. DebRoy, J. Appl. Phys. 95, 5220 (2004)

    Article  ADS  Google Scholar 

  21. T. Lienert, T. Siewert, S. Babu, and V. Acoff, Editors, ASM Handbook, Volume 6A: Welding Fundamentals and Processes (ASM International, Materials Park, Ohio, 2011)

  22. W.M. Steen, J. Mazumder, Laser Material Processing, 4th Edition (Springer, London, London, 2010)

    Book  Google Scholar 

  23. D.B. Hann, J. Iammi, J. Folkes, J. Phys. D. Appl. Phys. 44, 445401 (2011)

    Article  ADS  Google Scholar 

  24. R. Fabbro, J. Mater. Process. Technol. 264, 346 (2019)

    Article  Google Scholar 

  25. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik, J. Mater. Process. Technol. 214, 2915 (2014)

    Article  Google Scholar 

  26. A.M. Rubenchik, W.E. King, S.S. Wu, J. Mater. Process. Technol. 257, 234 (2018)

    Article  Google Scholar 

  27. V.A. Bykov, T.V. Kulikova, L.B. Vedmid, A.Y. Fishman, K.Y. Shunyaev, N.Y. Tarenkova, Phys. Met. Metallogr. 115, 705 (2014)

    Article  ADS  Google Scholar 

  28. J. J. Valencia and P. N. Quested, in ASM Handbook: Metals Process Simulation, edited by D. U. Furrer and S. L. Semiatin, Vol. 22B (ASM International, 2010), pp. 18–32

  29. Y. Huang, M. Ansari, H. Asgari, M.H. Farshidianfar, D. Sarker, M.B. Khamesee, E. Toyserkani, J. Mater. Process. Technol. 274, 116286 (2019)

    Article  Google Scholar 

  30. A. Vasinonta, J.L. Beuth, M. Griffith, J. Manuf. Sci. Eng. 129, 101 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Ontario Research Fund – Research Excellence (ORF-RE). The authors would like to acknowledge the encouragement and support from the members of the Multi-scale Additive Manufacturing lab (MSAM) at the University of Waterloo, especially Alexander Martinez-Marchese, Shahriar Imani Shahabad, and Osezua Ibhadode.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ansari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 25460 kb)

Supplementary file2 (AVI 23100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, M., Khamooshi, M., Huang, Y. et al. Analytical solutions for rapid prediction of transient temperature field in powder-fed laser directed energy deposition based on different heat source models. Appl. Phys. A 127, 445 (2021). https://doi.org/10.1007/s00339-021-04591-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04591-w

Keywords

Navigation