Skip to main content
Log in

Significant SRS sensing behavior of hydrothermally silver decorated sandwiched-like vanadia (Ag–V2O5) nanosheets toward ethanol

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work reports the hydrothermal synthesis of silver decorated sandwiched-like vanadium pentoxide (Ag–V2O5) nanosheets and their investigation for sensing of ethanol, acetone, n-propylamine and ammonia vapors at room temperature. Sandwich-type architectured (MI–MIO–MIIO) Ag–Ag2O–V2O5 nanosheets have been synthesized here. Structure, morphology and oxidation states of the material were analyzed using X-rays diffraction, FESEM and XPS studies, respectively. Gas sensing characteristics of the sensors based on Ag–V2O5 nanosheets were evaluated both in static and dynamic modes. It was figured out that the behavior of the sensing material is of p-type semiconducting nature with a high sensitivity value (≈22), fast response speed (in seconds) and high selectivity toward ethanol at room temperature which has been explained on the basis of semiconductors models. High sensitivity, quick response and significant selectivity of the sensors confirm their potential applications for environmental, security, food preservation and other industrial purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Wang, Y. Wu, Y. Qin et al., Rapid anodic oxidation of highly ordered TiO2 nanotube arrays. J. Alloy. Compd. 509(14), L157–L160 (2011)

    Article  Google Scholar 

  2. S. Phanichphant, Semiconductor metal oxides as hydrogen gas sensors. Procedia. Eng 87, 795–802 (2014)

    Article  Google Scholar 

  3. G. Korotcenkov, B.K. Cho, Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey). Sens. Actuators. B Chem. 156(2), 527–538 (2011)

    Article  Google Scholar 

  4. Y. Xia, P. Yang, Y. Sun et al., One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003)

    Article  Google Scholar 

  5. K. Mirabbaszadeh, M. Mehrabian, Synthesis and properties of ZnO nanorods as ethanol gas sensors. Physica Scripta. 85(3), 035701 (2012)

    Article  ADS  Google Scholar 

  6. A. Forleo, L. Francioso, S. Capone et al., Fabrication at wafer level of miniaturized gas sensors based on SnO2 nanorods deposited by PECVD and gas sensing characteristics. Sens. Actuators, B Chem. 154(2), 283–287 (2011)

    Article  Google Scholar 

  7. S. Bai, S. Chen, L. Chen et al., Ultrasonic synthesis of MoO3 nanorods and their gas sensing properties. Sens. Actuators, B Chem. 174, 51–58 (2012)

    Article  Google Scholar 

  8. S. Tian, F. Yang, D. Zeng et al., Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties. J. Phys. Chem. C 116(19), 10586–10591 (2012)

    Article  Google Scholar 

  9. Y. Liu, M. Liu, Growth of aligned square-shaped SnO2 tube arrays. Adv. Func. Mater. 15(1), 57–62 (2005)

    Article  MathSciNet  Google Scholar 

  10. S. Si, C. Li, X. Wang et al., Fe2O3/ZnO core-shell nanorods for gas sensors. Sens. Actuators, B Chem. 119(1), 52–56 (2006)

    Article  Google Scholar 

  11. J. Liu, X. Wang, Q. Peng et al., Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials. Adv. Mater. 17(6), 764–767 (2005)

    Article  Google Scholar 

  12. A.D. Raj, T. Pazhanivel, P.S. Kumar et al., Self assembled V2O5 nanorods for gas sensors. Curr. Appl. Phys. 10(2), 531–537 (2010)

    Article  ADS  Google Scholar 

  13. M. Yu, X. Liu, Y. Wang et al., Gas sensing properties of p-type semiconducting vanadium oxide nanotubes. Appl. Surf. Sci. 258(24), 9554–9558 (2012)

    Article  ADS  Google Scholar 

  14. W. Jin, S. Yan, L. An et al., Enhancement of ethanol gas sensing response based on ordered V2O5 nanowire microyarns. Sens. Actuators, B Chem. 206, 284–290 (2015)

    Article  Google Scholar 

  15. A.H. Shah, Y. Liu, S. Yang et al., Synthesis and ethanol sensing properties of V2O5 hierarchical microspheres. Ferroelectrics 477, 1–7 (2015)

    Google Scholar 

  16. A.H. Shah, Y. Liu, Y. Lu et al., Room temperature highly selective ethanol sensing behavior of hydrothermally prepared Te-V2O5 nanorod nanocomposites. Mater. Sci. Semicond. Process. 31, 630–638 (2015)

    Article  Google Scholar 

  17. A.H. Shah, Yueli Liu, Wei Jin et al., Highly selective ethanol sensing properties of hydrothermally synthesized cerium orthovanadate (CeVO4) nanorods. Material Letters. 154, 144–147 (2015)

    Article  Google Scholar 

  18. H. Tang, M. Yan, H. Zhang et al., A selective NH3 gas sensor based on Fe2O3-ZnO nanocomposites at room temperature. Sens. Actuators, B Chem. 114(2), 910–915 (2006)

    Article  Google Scholar 

  19. H. Yang, X. Zhang, A. Tang, Mechanosynthesis and gas-sensing properties of In2O3 /SnO2 nanocomposites. Nanotechnology 17(12), 2860 (2006)

    Article  ADS  Google Scholar 

  20. U.S. Choi, G. Sakai, K. Shimanoe et al., Sensing properties of Au-loaded SnO2-Co3O4 composites to CO and H2. Sens. Actuators, B Chem. 107(1), 397–401 (2005)

    Article  Google Scholar 

  21. Z. Yang, L.M. Li, Q. Wan et al., High-performance ethanol sensing based on an aligned assembly of ZnO nanorods. Sens. Actuators, B Chem. 135(1), 57–60 (2008)

    Article  MathSciNet  Google Scholar 

  22. C. Wang, L. Yin, L. Zhang et al., Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010)

    Article  ADS  Google Scholar 

  23. W. Jin, B. Dong, W. Chen et al., Synthesis and gas sensing properties of Fe2O3 nanoparticles activated V2O5 nanotubes. Sens. Actuators, B Chem. 145(1), 211–215 (2010)

    Article  Google Scholar 

  24. U. Schlecht, B. Guse, I. Raible et al., A direct synthetic approach to vanadium pentoxide nanofibres modified with silver nanoparticles. Chem. Commun. 19, 2184–2185 (2004)

    Article  Google Scholar 

  25. W. Jin, S. Yan, W. Chen et al., Preparation and gas sensing property of Ag-supported vanadium oxide nanotubes. Funct. Mater. Lett. 07(03), 1450031 (2014)

    Article  ADS  Google Scholar 

  26. P.S. Venkatesh, P. Dharmaraj, V. Purushothaman et al., Point defects assisted NH3 gas sensing properties in ZnO nanostructures. Sens. Actuators B: Chem. 212, 10–17 (2015)

    Article  Google Scholar 

  27. Y. Chen, C.L. Zhu, G. Xiao, Reduced-temperature ethanol sensing characteristics of flower-like ZnO nanorods synthesized by a sonochemical method. Nanotechnology 17(18), 4537 (2006)

    Article  ADS  Google Scholar 

  28. Q. Simon, D. Barreca, A. Gasparotto et al., Ag/ZnO nanomaterials as high performance sensors for flammable anfigd toxic gases. Nanotechnology. 23(2), 025502 (2012)

    Article  ADS  Google Scholar 

  29. M. Romand, M. Roubin, J.P. Deloume, ESCA studies of some copper and silver selenides. J. Electron Spectrosc. Relat. Phenom. 13(3), 229–242 (1978)

    Article  Google Scholar 

  30. V.K. Kaushik, XPS core level spectra and Auger parameters for some silver compounds. J. Electron Spectrosc. Relat. Phenom. 56(3), 273–277 (1991)

    Article  Google Scholar 

  31. G.B. Hoflund, J.F. Weaver, W.S. Epling, Ag foil by XPS. Surf. Sci. Spectra 3(2), 151–156 (1994)

    Article  ADS  Google Scholar 

  32. L.H. Tjeng, M.B.J. Meinders, J. van Elp et al., Electronic structure of Ag2O. Phys. Rev. B 41(5), 3190–3199 (1990)

    Article  ADS  Google Scholar 

  33. V.I. Nefedov, M.N. Firsov, I.S. Shaplygin, Electronic structures of MRhO2, MRh2O4, RhMO4 and Rh2MO6 on the basis of X-ray spectroscopy and ESCA data. J. Electron Spectrosc. Relat. Phenom. 26(1), 65–78 (1982)

    Article  Google Scholar 

  34. Yu. Minglang, X. Liu, Y. Wang et al., Gas sensing properties of p-type semiconducting vanadium oxide nanotubes. Appl. Surf. Sci. 258, 9554–9558 (2012)

    Article  ADS  Google Scholar 

  35. H. Idriss, E.G. Seebauer, Reactions of ethanol over metal oxides. J. Mol. Catal. A: Chem. 152, 201–212 (2000)

    Article  Google Scholar 

  36. A.H. Shah, Y. Liu, G.S. Zakharova, W. Chen, Synthesis of vanadium pentoxide nanoneedles by physical vapour deposition and their highly sensitive behavior towards acetone at room temperature. RSC Adv. 5, 23489–23497 (2015)

    Article  ADS  Google Scholar 

  37. H.E. Toma, R.A. Timm, M.F. Gonzalez et al., Vanadium (V) oxide-metal organic nanocomposites as electrochemical sensing materials. Mater. Sci. Forum 636–637, 729–736 (2010)

    Article  Google Scholar 

  38. J. Asbalter, A. Subrahmanyam, p-type transparent conducting In2O3-Ag2O thin films prepared by reactive electron beam evaporation technique. J. Vac. Sci. Technol., A 18(4), 1672–1676 (2000)

    Article  ADS  Google Scholar 

  39. A.H. Shah, Y. Liu, V.T. Nguyen et al., Enhanced ultra-stable n-propylamine sensing behavior of V2O5/In2O3 core-shell nanorods. RSC Adv. 5, 54412–54419 (2015)

    Article  ADS  Google Scholar 

  40. H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators, B Chem. 192, 607–627 (2014)

    Article  Google Scholar 

  41. R. Van De Krol, H.L. Tuller, Electroceramics-the role of interfaces. Solid State Ionics 150(1–2), 167–179 (2002)

    Article  Google Scholar 

  42. I.S. Hwang, J.K. Choi, S.J. Kim et al., Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO. Sens. Actuators, B Chem. 142(1), 105–110 (2009)

    Article  Google Scholar 

  43. A.A. Abokifa, K. Haddad, J. Fortner et al., Sensing mechanism of ethanol and acetone at room temperature by SnO2 nano-columns synthesized by aerosol routes: theoretical calculations compared to experimental results. J. Mater. Chem. A 6(5), 2053–2066 (2018)

    Article  Google Scholar 

  44. S. Bai, H. Liu, J. Sun, Y. Tian, R. Luo, D. Li et al., Mechanism of enhancing the formaldehyde sensing properties of Co3O4 via Ag modification. RSC Adv. 5, 48619–48625 (2015)

    Article  ADS  Google Scholar 

  45. D.J.J.W.S.R. liu Pan Tang Liu Bai Luo, Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties. J. Phys. Chem Solids. 124, 36–43 (2019)

    Article  ADS  Google Scholar 

  46. S. Wang, B. Xiao, S. Yang, P. Wang, C. Xiao, Z. Li et al., Enhanced HCHO gas sensing properties by Ag-loaded sunflower-like In2O3 hierarchical nanostructures. J. Mater Chem 2, 6598 (2014)

    Article  Google Scholar 

  47. Z. Chen, Z. Lin, M. Xu, Y. Hong, N. Li, P. Fu, Z. Chen, Effect of gas sensing properties by Sn-Rh codoped ZnO nano-sheets. Electron. Mater. Lett. 12(3), 343–349 (2016)

    Article  ADS  Google Scholar 

  48. P. Guha, A. Ghosh, R. Thapa, E.M. Kumar, S. Kirishwaran, R. Singh, P.V. Satyam, Ag nanoparticle decorated molybdenum oxide structures: growth, characterization, DFT studies and their application to enhanced field emission. Nanotechnology. 28, 415602 (2017)

    Article  Google Scholar 

  49. C. Suo, C. Gao, X. Wu, Y. Zuo, X. Wang, J. Jia, Ag-decorated ZnO nanorods prepared by photochemical deposition and their high selectivity to ethanol using conducting oxide electrodes. RSC Adv. 5, 92107–92113 (2015)

    Article  ADS  Google Scholar 

  50. Y. Lin, W. Wei, Y. Li, F. Li, J. Zhou, D. Sun et al., Preparation of Pd nanoparticle decorated hollow SnO2 nanofibers and their enhanced formaldehyde sensing properties. J. Alloy. Compd. 651, 690–698 (2015)

    Article  Google Scholar 

  51. C. Liu, Q. Kuang, Z. Xie, L. Zheng, The effect of noble metal (Au, Pd, and Pt) nanoparticles on the gas sensing performance of SnO2-based sensors: a case study on the 221 high-index faceted SnO2, Octahedra. Cryst. Eng. Comm. 17, 6308–6313 (2015)

    Article  Google Scholar 

  52. F. Wei, H. Zhang, M. Nguyen, M. Ying, R. Gao, Z. Jiao, Template-free synthesis of flower-like SnO2 hierarchical nanostructures with improved gas sensing performance. Sens. Actuator. B Chem. 215, 15–23 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Higher Education Commission of Pakistan vide its Project No. SRGP # 731 and HEC project of strengthening of physics laboratory. Support of Information Functional Nanomaterials laboratory, School of Materials Science and Engineering Wuhan University of Technology is also highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Hakim Shah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, A.H., Chen, W., Liu, Y. et al. Significant SRS sensing behavior of hydrothermally silver decorated sandwiched-like vanadia (Ag–V2O5) nanosheets toward ethanol. Appl. Phys. A 127, 477 (2021). https://doi.org/10.1007/s00339-021-04584-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04584-9

Keywords

Navigation