Skip to main content

Advertisement

Log in

Photoelectrochemical, photocatalytic and electrochemical hydrogen peroxide production using Fe/S-codoped TiO2 nanotubes as new visible-light-absorbing photocatalysts

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Codoping of TiO2 nanotube with iron and sulfur considerably improved the photocatalytic and photoelectrocatalytic preparation of hydrogen peroxide using TiO2 in the absence of organics scavengers. One-step anodization of titanium was used to synthesize Fe-doped, S-doped and Fe/S-codoped TiO2 nanotubes. FE-SEM, TEM, XRD, EDX and EDX-Mapping analyses were used to characterize the structure of the nanomaterials prepared. The photoelectrochemical characteristics of the doped and codoped titanium dioxide electrodes were studied under xenon lamp illumination in 0.1 M aqueous solution of potassium hydrogen phthalate. A maximum photocurrent density of 130 µA/cm2 was shown by Fe/S-codoped TiO2 nanotube electrode (sample Fe3S-TNT), which is 13 times greater than that of undoped TiO2 nanotube. H2O2 production remarkably increased by the simultaneous application of the bias potential and light irradiation compared with photocatalytic and electrocatalytic H2O2 preparation. According to the results, more photogenerated electrons are produced with the help of bias potential and the recombination of photogenerated electron–hole pairs is reduced in photoelectrocatalytic (PEC) production of hydrogen peroxide. Therefore, more electrons are available to reduce oxygen and thus more hydrogen peroxide is produced. In this work, a novel method has been developed to improve the photocatalytic activity of TiO2 nanotubes by codoping of iron and sulfur, and new insights into the development of a photoelectrocatalytic system for H2O2 synthesis are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.S. Disselkamp, Energy storage using aqueous hydrogen peroxide. Energ Fuel 22, 2771–2774 (2008)

    Article  Google Scholar 

  2. S.I. Yamazaki, Z. Siroma, H. Senoh, T. Loroi, N. Fujiwara, K. Yasuda, A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel. J. Power Sources 178, 20–25 (2008)

    Article  ADS  Google Scholar 

  3. F. Ye, T. Wang, X. Quan, H. Yu, S. Chen, Constructing efficient WO3-FPC system for photoelectrochemical H2O2 production and organic pollutants degradation, Chem. Eng. J. 389 (2020) 123427

  4. J. Liang, Y. Wang, Q. Liu, Y. Luo, T. Li, H. Zhao, S. Lu, F. Zhang, A.M. Asiri, F. Liu, D. Ma, X. Sun, Electrocatalytic hydrogen peroxide production in acidic media enabled by NiS2 nanosheets. J. Mater. Chem. A 9, 6117–6122 (2021)

    Article  Google Scholar 

  5. J. Zhang, G. Zhang, S. Jin, Y. Zhou, Q. Ji, H. Lan, H. Liu, J. Qu, Graphitic N in nitrogen-Doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction. Carbon 163, 154–161 (2020)

    Article  Google Scholar 

  6. S. Anantharaj, S. Pitchaimuthu, S. Noda, A review on recent developments in electrochemical hydrogen peroxide synthesis with a critical assessment of perspectives and strategies, Adv. Colloid Interface. 287 (2021) 102331

  7. V.R. Choudhary, A.G. Gaikwad, S.D. Sansare, Nonhazardous direct oxidation of hydrogen to hydrogen peroxide using a novel membrane catalyst. Angew. Chem. Int. Ed. 40, 1776–1779 (2001)

    Article  Google Scholar 

  8. S. Li, G. Dong, R. Hailili, L. Yang, Y. Li, F. Wang, Y. Zeng, C. Wang, Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl. Catal. B: Environ. 190, 26–35 (2016)

    Article  Google Scholar 

  9. K. Fuku, R. Takioka, K. Iwamura, M. Todoroki, K. Sayama, N. Ikenaga, Photocatalytic H2O2 production from O2 under visible light irradiation over phosphate ion-coated Pd nanoparticles-supported BiVO4, Appl. Catal. B: Environ. 272 (2020) 119003

  10. K. Fuku, Y. Miyase, Y. Miseki, T. Funaki, T. Gunji, K. Sayama, Photoelectrochemical hydrogen peroxide production from water on a WO3/BiVO4 photoanode and from O2 on an Au cathode without external bias. Chem. Asian J. 12, 1111–1119 (2017)

    Article  Google Scholar 

  11. J. Sheng, X. Li, Y. Xu, Generation of H2O2 and OH radicals on Bi2WO6 for phenol degradation under visible light. ACS Catal. 4, 732–737 (2014)

    Article  Google Scholar 

  12. D. Zhang, T. Liu, K. Yin, C. Liu, Y. Wei, Selective H2O2 production on N-doped porous carbon from direct carbonization of metal organic frameworks for electro-Fenton mineralization of antibiotics, Chem. Eng. J. 383 (2020) 123184.

  13. K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Efficient photocatalytic production of hydrogen peroxide from water and dioxygen with bismuth vanadate and a cobalt (II) chlorin complex. ACS Energy Lett. 1, 913–919 (2016)

    Article  Google Scholar 

  14. Y. Wang, Y. Wang, J. Zhao, M. Chen, X. Huang, Y. Xu, Efficient production of H2O2 on Au/WO3 under visible light and the influencing factors, Appl. Catal. B: Environ. 284 (2021) 119691

  15. Y.M. Liu, X. Quan, X.F. Fan, H. Wang, S. Chen, High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem. Int. Ed. 54, 6837–6841 (2015)

    Article  Google Scholar 

  16. V. Perazzolo, C. Durante, R. Pilot, A. Paduano, J. Zheng, G.A. Rizzi, A. Martucci, G. Granozzi, A. Gennaro, Nitrogen and sulfur doped mesoporous carbon as metal free electrocatalysts for the in situ production of hydrogen peroxide. Carbon 95, 949–963 (2015)

    Article  Google Scholar 

  17. J. Zhang, L. Zheng, F. Wang, C. Chen, H. Wu, S.A. Khan Leghari, M. Long, The critical role of furfural alcohol in photocatalytic H2O2 production on TiO2, Appl. Catal. B: Environ. 269 (2020) 118770.

  18. D. Dastan, P.U. Londhe, N.B. Chaure, Characterization of TiO2 nanoparticles prepared using different surfactants by sol-gel method. J. Mater. Sci: Mater. Electron. 25, 3473–3479 (2014)

    Google Scholar 

  19. D. Dastan, S.L. Panahi, N.B. Chaure, Characterization of titania thin films grown by dip-coating technique. J. Mater. Sci: Mater. Electron. 27, 12291–12296 (2016)

    Google Scholar 

  20. M.M. Momeni, Y. Ghayeb, Fabrication, characterization and photoelectrochemical behavior of Fe-TiO2 nanotubes composite photoanodes for solar water splitting. J. Electroanal. Chem. 751, 43–48 (2015)

    Article  Google Scholar 

  21. S. Abbasi, M. Hasanpour, F. Ahmadpoor, M. Sillanpää, D. Dastan, A. Achour, Application of the statistical analysis methodology for photodegradation of methyl orange using a new nanocomposite containing modified TiO2 semiconductor with SnO2. Int. J. Environ. An. Chem. 101, 208–224 (2021)

    Article  Google Scholar 

  22. D. Dastan, Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol-gel. Appl. Phys. A 123, 1–13 (2017)

    Article  ADS  Google Scholar 

  23. D. Dastan, S.L. Panahi, A.P. Yengantiwar, A.G. Banpurkar, Morphological and electrical studies of titania powder and films grown by aqueous solution method. Adv. Sci. Lett. 22, 950–953 (2016)

    Article  Google Scholar 

  24. X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-Based Photocatalytic Hydrogen Generation. Chem. Rev. 110, 6503–6570 (2010)

    Article  Google Scholar 

  25. M.M. Momeni, Y. Ghayeb, F. Ezati, Investigation of the morphology, structural, optical, and photoelectrochemical properties of WO3-Fe2O3/CrTiO2 thin-film photoanodes for water splitting. Appl. Phys. 126, 303 (2020)

    Article  Google Scholar 

  26. M.M. Momeni, S.H. Khansari-Zadeh, H. Farrokhpour, Fabrication of tungsten-iron-doped TiO2 nanotubes via anodization: new photoelectrodes for photoelectrochemical cathodic protection under visible light. SN Applied Sciences 1, 1160 (2019)

    Article  Google Scholar 

  27. Y.Q. Gai, J.B. Li, S.S. Li, J.B. Xia, S.H. Wei, Design of narrow-gap TiO2: A passivated codoping approach for enhanced photoelectrochemical activity, Phys. Rev. Lett. 102 (2009) 036402

  28. R. Sasikala, A.R. Shirole, V. Sudarsan, Jagannath, R. Naik, R. Rao, S.R. Bharadwaj, Enhanced photocatalytic activity of indium and nitrogen co-doped TiO2-Pd nanocomposites for hydrogen generation, Appl. Catal. A 47 (2010) 47–54

  29. X.J. Sun, H. Liu, J. Dong, J. Wei, Preparation and Characterization of Ce/N-Codoped TiO2 Particles for Production of H2 by Photocatalytic Splitting Water Under Visible Light. Catal. Lett. 135, 219–225 (2010)

    Article  Google Scholar 

  30. M.Z. Selcuk, M.S. Boroglu, I. Boz, Hydrogen production by photocatalytic water-splitting using nitrogen and metal co-doped TiO2 powder photocatalyst. React. Kinet. Mech. Catal. 106, 313–324 (2012)

    Article  Google Scholar 

  31. X.B. Li, Q.F. Liu, X.Y. Jiang, J.H. Huang, Enhanced photocatalytic activity of Ga-N co-doped anatase TiO2 for water decomposition to hydrogen. Int. J. Electrochem. Sci. 7, 11519 (2012)

    Google Scholar 

  32. D. Tskamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, Photocatalytic H2O2 Production from Ethanol/O2 System Using TiO2 Loaded with Au-Ag Bimetallic Alloy Nanoparticles. ACS Catal. 2, 599–603 (2012)

    Article  Google Scholar 

  33. V. Diesen, M. Jonsson, Formation of H2O2 in TiO2 photocatalysis of oxygenated and deoxygenated aqueous systems: A probe for photocatalytically produced hydroxyl radicals. J. Phys. Chem. C 118, 10083–10087 (2014)

    Article  Google Scholar 

  34. V. Maurino, C. Minero, G. Mariella, E. Pelizzetti, Sustained production of H2O2 on irradiated TiO2-fluoride systems. Chem. Commun. 262, 2627–2629 (2005)

    Article  Google Scholar 

  35. X.J. Ye, Y.J. Cui, X.Q. Qiu, X.C. Wang, Selective oxidation of benzene to phenol by Fe-CN/TS-1 catalysts under visible light irradiation. Appl. Catal. B: Environ. 152–153, 383–389 (2014)

    Article  Google Scholar 

  36. T. Ohno, Z. Miyamoto, K. Nishijima, H. Kanemitsu, F. Xueyuan, Sensitization of photocatalytic activity of S- or N-doped TiO2 particles by adsorbing Fe3+ cations. Appl. Catal. A: Gen. 302, 62–68 (2006)

    Article  Google Scholar 

  37. V. Menendez-Flores, D.W. Bahnemann, T. Ohno, Visible light photocatalytic activities of S-doped TiO2-Fe3+ in aqueous and gas phase. Appl. Catal. B: Environ. 103, 99–108 (2011)

    Article  Google Scholar 

  38. M. Hamadanian, A. Reisi-Vanani, M. Behpour, A.S. Esmaeily, Synthesis and characterization of Fe, S-codoped TiO2 nanoparticles: Application in degradation of organic water pollutants. Desalination 281, 319–324 (2011)

    Article  Google Scholar 

  39. K.C. Christoforidis, S.J.A. Figueroa, M. Fernandez-Garcia, Iron-sulfur codoped TiO2 anatase nano-materials: UV and sunlight activity for toluene degradation. Appl. Catal. B: Environ. 117–118, 310–316 (2012)

    Article  Google Scholar 

  40. Y. Niu, M. Xing, J. Zhang, B. Tian, Visible light activated sulfur and iron co-doped TiO2 photocatalyst for the photocatalytic degradation of phenol. Catal. Today 201, 159–166 (2013)

    Article  Google Scholar 

  41. X. Cheng, X. Yu, Z. Xing, One-step synthesis of Fe-N-S-tri-doped TiO2 catalyst and its enhanced visible light photocatalytic activity. Mater. Res. Bull. 47, 3804–3809 (2012)

    Article  Google Scholar 

  42. M.M. Momeni, Y. Ghayeb, Z. Ghonchegi, Visible light activity of sulfur-doped TiO2 nanostructure photoelectrodes prepared by single-step electrochemical anodizing process. J. Solid State Electrochem. 19, 1359–1366 (2015)

    Article  Google Scholar 

  43. M.M. Momeni, M. Akbarnia, Y. Ghayeb, Preparation of S-W-codoped TiO2 nanotubes and effect of various hole scavengers on their photoelectrochemical activity: Alcohol series. Int. J. Hydrogen Energ 45, 33552–33562 (2020)

    Article  Google Scholar 

  44. S. Ma, L. Wang, Y. Wang, P. Zuo, M. He, H. Zhang, L. Ma, T. Wu, G. Yin, Palladium nanocrystals-imbedded mesoporous hollow carbon spheres with enhanced electrochemical kinetics for high performance lithium sulfur batteries. Carbon 143, 878–889 (2019)

    Article  Google Scholar 

  45. Y. Sun, I. Sinev, W. Ju, A. Bergmann, S. Dresp, S. Kühl, C. Spori, H. Schmies, H. Wang, D. Bernsmeier, B. Paul, R. Schmack, R. Kraehnert, B. Roldan Cuenya, P. Strasser, Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen- doped mesoporous carbon catalysts, ACS Catal. 8 (2018) 2844–2856.

  46. T. Baran, S. Wojtyla, A. Vertova, A. Minguzzi, S. Rondinini, Photoelectrochemical and photocatalytic systems based on titanates for hydrogen peroxide formation. J. Electroanal. Chem. 808, 395–402 (2018)

    Article  Google Scholar 

  47. X. Yang, C. Cao, L. Erickson, K. Hohn, R. Maghirang, K. Klabunde, Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation. Appl. Catal. B: Environ. 91, 657–662 (2009)

    Article  Google Scholar 

  48. S. Banerjee, S.C. Pillai, P. Falaras, K.E. O’Shea, J.A. Byrne, D.D. Dionysiou, New Insights into the Mechanism of Visible Light Photocatalysis. J. Phys. Chem. Lett. 5, 2543–2554 (2014)

    Article  Google Scholar 

  49. Z. Zafar, R. Fatima, J.O. Kim, Experimental studies on water matrix and influence of textile effluents on photocatalytic degradation of organic wastewater using Fe-TiO2 nanotubes: Towards commercial application, Environ. Res. 197 (2021) 111120

  50. T. Li, A. Abdelhaleem, W. Chu, S. Pu, F. Qi, J. Zou, S-doped TiO2 photocatalyst for visible LED mediated oxone activation: Kinetics and mechanism study for the photocatalytic degradation of pyrimethanil fungicide, Chem. Eng. J. 411 (2021) 128450

  51. T.T. T. Le, D.T. Tran, T.H. Danh, Remarkable enhancement of visible light driven photocatalytic performance of TiO2 by simultaneously doping with C, N, and S, Chem. Phys. 545 (2021) 111144

  52. M. Imran, Z. Saeed, M. Pervaiz, K. Mehmood, R. Ejaz, U. Younas, H. Amir Nadeem, S.Hussain, Enhanced visible light photocatalytic activity of TiO2 co-doped with Fe, Co, and S for degradation of Cango red, Spectrochim Acta A 255 (2021) 119644

Download references

Acknowledgments

The author wish to acknowledge the financial support of Iran National Science Foundation (Project No: 97021337). Also, I am so thankful to Isfahan University of Technology for supporting of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Mohsen Momeni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3087 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, M.M., Akbarnia, M. Photoelectrochemical, photocatalytic and electrochemical hydrogen peroxide production using Fe/S-codoped TiO2 nanotubes as new visible-light-absorbing photocatalysts. Appl. Phys. A 127, 449 (2021). https://doi.org/10.1007/s00339-021-04574-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04574-x

Keywords

Navigation