Skip to main content
Log in

Combining low and high electron energy diffractions as a powerful tool for studying 2D materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials are among the most studied ones nowadays, because of their unique properties. They are made of single- or few-atom-thick layers whose variation in the stacking sequence may result in a variety of crystallographic structures, whether they are assembled by van der Waals forces or covalently bonded. Although identifying both the number of layers and the stacking sequence is of an utmost importance because of the driving role these parameters have on the properties, there is currently no technique available to do so. We demonstrate here that combining low energy (1–10 keV) electron diffraction with the usual high energy (> 50 keV) electron diffraction on the same 2D object is able to fill the gap. We illustrate this by taking the examples of a variety of 2D materials, built from either a single type of atom with low Z-number such as graphene (C), or two types of atoms with low Z-number such as diamane (C2H), or two types of atoms with high Z-number such as MoS2. Meanwhile, we propose a simplified method for comparing calculated patterns to experimental ones, and discuss the limitation of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Most of the data are provided either in the main article, or a Supplementary Information. Any data missing or materials are available upon request to the corresponding author.

Code availability

Code can be made available upon request to the corresponding author.

References

  1. S. Horiuchi, T. Gotou, M. Fujiwara, R. Sotoaka, M. Hirata, K. Kimoto, T. Asaka, T. Yokosawa, Y. Matsui, K. Watanabe, M. Sekita, Jpn. J. Appl. Phys. 42, L1073 (2003)

    Article  ADS  Google Scholar 

  2. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446, 60 (2007)

    Article  ADS  Google Scholar 

  3. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl, Sol. State Comm. 143, 101 (2007)

    Article  ADS  Google Scholar 

  4. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. Gun’ko, J. Boland, P. Niraj, G. Duesberg, S. Krishnamurti, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, Nature Nanotechnol. 3, 563 (2008)

  5. Y.J. Suh, S.Y. Park, M.J. Kim, Microsc. Microanal. 15, 1168 (2009)

    Article  ADS  Google Scholar 

  6. N. Behabtu, J.R. Lomeda, M.J. Green, A.L. Higginbotham, A. Sinitskii, D.V. Kosynkin, D. Tsentalovich, A.N.G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J.M. Tour, M. Pasquali, Nature Nanotechnol. 5, 406 (2010)

    Article  ADS  Google Scholar 

  7. J. Ping, M.S. Fuhrer, Nano Lett. 12, 4635 (2012)

    Article  ADS  Google Scholar 

  8. B. Shevitski, M. Mecklenburg, W.A. Hubbard, E.R. White, B. Dawson, M.S. Lodge, M. Ishigami, B.C. Regan, Phys. Rev. B 87, 045417 (2013)

    Article  ADS  Google Scholar 

  9. T. Latychevskaia, S.-K. Son, Y. Yang, D. Chancellor, M. Brown, S. Ozdemir, I. Madan, G. Berruto, F. Carbone, A. Mishchenko, K.S. Novoselov, Front. Phys. 14, 13608 (2019)

    Article  ADS  Google Scholar 

  10. P.V. Bakharev, M. Huang, M. Saxena, S.W. Lee, S.H. Joo, S.O. Park, J. Dong, D.C. Camacho-Mojica, S. Jin, Y. Kwon, M. Biswal, F. Ding, S.K. Kwak, Z. Lee, R.S. Ruoff, Nature Nanotechnol. 15, 59 (2020)

    Article  ADS  Google Scholar 

  11. P. Deb, M. C. Cao, Y. Han, M. E. Holtz, S. Xie, J. Park, R. Hovdena, D. A. Muller, Ultramicrosc. 215, 113019 (2020)

  12. L.A. Chernozatonskii, P.B. Sorokin, A. Kvashnin, D.G. Kvashnin, J. Exp. Theor. Phys. Lett. 90, 134 (2009)

    Article  Google Scholar 

  13. D.C. Elias, R.R. Nair, M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Science 323, 610 (2009)

    Article  ADS  Google Scholar 

  14. F. Piazza, K. Gough, M. Monthioux, P. Puech, I. Gerber, R. Wiens, G. Paredes, C. Ozoria, Carbon 145, 10 (2019)

    Article  Google Scholar 

  15. F. Piazza, M. Monthioux, P. Puech, I. Gerber, Carbon 156, 234 (2020)

    Article  Google Scholar 

  16. F. Piazza, K. Cruz, M. Monthioux, P. Puech, I. Gerber, Carbon 169, 129 (2020)

    Article  Google Scholar 

  17. Z. Wang, S. Ning, T. Fujita, A. Hirata, M. Chen, ACS Nano 10, 10308 (2016)

    Article  Google Scholar 

  18. B.E. Smith, D.E. Luzzi, J. Appl. Phys. 90, 3509 (2001)

    Article  ADS  Google Scholar 

  19. F. Piazza, M. Monthioux, P. Puech, I.C. Gerber, K. Gough, J. Carbon Res. 7, 9 (2021)

    Article  Google Scholar 

  20. V.S. Neverov, SoftwareX. 6, 63 (2017)

    Article  ADS  Google Scholar 

  21. D. Sen, K.S. Novoselov, P.M. Reis, M.J. Buelher, Small 6, 1108 (2010)

    Article  Google Scholar 

  22. A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach, Nano Lett. 8, 2012 (2008)

    Article  ADS  Google Scholar 

  23. K. Kim, Z. Lee, W. Regan, C. Kisielowski, M.F. Crommie, A. Zettl, ACS Nano 5, 2142 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank R. Ruoff for stimulating discussions.

Funding

This work is funded by the EUR grant NanoX n° ANR-17-EURE-0009 in the framework of the French "Programme des Investissements d’Avenir" and by the Ministry of Higher Education, Science and Technology of the Dominican Republic (2016–2017 and 2018 FONDOCyT programs).

Author information

Authors and Affiliations

Authors

Contributions

P.P. is at the origin of the methodology principle and performed the calculations. I.G. contributed to the calculations and supplied information on MoS2. F.P. provided the 2LG materials and carried out the low-voltage electron diffraction work. M.M. wrote most of the paper. All the authors contributed to discussing the results and the manuscript versions.

Corresponding authors

Correspondence to Pascal Puech or Marc Monthioux.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

339_2021_4568_MOESM1_ESM.docx

Supporting Information are provided, reminding the basics on the possible stacking sequences in graphene, giving details on the methodology proposed to calculate spot intensities in the diffraction patterns, and providing further data. (DOCX 939 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puech, P., Gerber, I.C., Piazza, F. et al. Combining low and high electron energy diffractions as a powerful tool for studying 2D materials. Appl. Phys. A 127, 485 (2021). https://doi.org/10.1007/s00339-021-04568-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04568-9

Keywords

Navigation