Skip to main content
Log in

Simple preparation of Ni/CuO nanocomposites with superior sensing activity toward the detection of methane gas

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Composite nanostructures composed of transition metal oxides are promising materials in catalyst, supercapacitor, and gas sensors. Here we have used Ni for the enhancement of the CuO gas sensor toward methane gas. High-quality Nix/CuO nanocomposites (where x = 0.0 to 10%) have been synthesized by the simple method of solid–solid reaction. A nanoparticle structure was obtained. The size of the nanoparticle can be controlled easily by adjusting the relative Ni concentration in Ni/CuO nanoparticles. The relative diffusion amount of Ni to CuO was proved to be the key factor to influence the sensing sample properties. XRD patterns and HRTEM image confirmed the preparation of Nix/CuO phase, which showed a decline in crystallite size from ~ 17.8 to 14.6 nm (XRD). FESEM and TEM images also exhibited the effect of Ni content on the particle size of CuO. EDX mapping confirmed that the NiO fine particles were distributed semi-uniform at low Ni concentration; however, they aggregated at high Ni concentration. The sensing properties were done at different temperatures and various concentrations of methane gas. It was illustrated that the increase of Ni up to 5% showed an improvement in the sensor response of CuO toward methane compared to the pure phase of CuO and NiO, as well. The maximum-response temperature was 250 °C at which the sensor response is ~ 4.9 (390%), which is four times higher than the CuO and NiO pure phases. The present nanocomposites could detect CH4 at lower levels of explosive level (5%). The mechanism of gas sensing is explained depending on the electronic structure changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A.G. El-Deen, M. Hussein El-Shafei, A. Hessein, A.H. Hassanin, N.M. Shaalan, A.A. El-Moneim, High-performance asymmetric supercapacitor based hierarchical NiCo2O4@ carbon nanofibers//activated multichannel carbon nanofibers. Nanotechnology 31, 365404 (2020). https://doi.org/10.1088/1361-6528/ab97d6

    Article  Google Scholar 

  2. W.W. Ning, L.B. Chen, W.F. Wei, Y.J. Chen, X.Y. Zhang, NiCoO2/NiCoP@Ni nanowire arrays: tunable composition and unique structure design for high-performance winding asymmetric hybrid supercapacitors. Rare. Met. 39, 1034–1044 (2020). https://doi.org/10.1007/s12598-020-01374-9

    Article  Google Scholar 

  3. G. Niu, C. Zhao, H. Gong, Z. Yang, X. Leng, F. Wang, NiO, nanoparticle-decorated SnO2 nanosheets for ethanol sensing with enhanced moisture resistance. Microsyst. Nanoeng (2019). https://doi.org/10.1038/s41378-019-0060-7

    Article  Google Scholar 

  4. Y.-C. Liang, Y.-C. Chang, The effect of Ni content on gas-sensing behaviors of ZnO–NiO p–n composite thin films grown through radio-frequency cosputtering of ceramic ZnO and NiO targets. Cryst. Eng. Comm 22, 2315–2326 (2020). https://doi.org/10.1039/D0CE00052C

    Article  Google Scholar 

  5. N.M. Shaalan, M. Rashad, A.H. Moharram, M.A. Abdel-Rahim, Promising methane gas sensor synthesized by microwave-assisted Co3O4 nanoparticles. Mater. Sci. Semicond. Process. 46, 1–5 (2016). https://doi.org/10.1016/j.mssp.2016.01.020

    Article  Google Scholar 

  6. A.V. Munde, B.B. Mulik, P.P. Chavan, B.R. Sathe, Enhanced electrocatalytic activity towards urea oxidation on Ni nanoparticle decorated graphene oxide nanocomposite. Electrochim. Acta. 349, 136386 (2020). https://doi.org/10.1016/j.electacta.2020.136386

    Article  Google Scholar 

  7. S. Li, R. Feng, M. Li, X. Zhao, B. Zhang, Y. Liang, H. Ning, J. Wang, C. Wang, P.K. Chu, Needle-like CoO nanowire composites with NiO nanosheets on carbon cloth for hybrid flexible supercapacitors and overall water splitting electrodes. RSC Adv. 10, 37489–37499 (2020). https://doi.org/10.1039/d0ra07307e

    Article  ADS  Google Scholar 

  8. Y. Jiang, C. Hall, P.A. Burr, N. Song, D. Lau, J. Yuwono, D.W. Wang, Z. Ouyang, A. Lennon, Fabrication strategies for high-rate TiO2 nanotube anodes for Li ion energy storage. J. Power Sour. 463, 228205 (2020). https://doi.org/10.1016/j.jpowsour.2020.228205

    Article  Google Scholar 

  9. A. Aljaafari, F. Ahmed, C. Awada, N.M. Shaalan, Flower-Like ZnO Nanorods Synthesized by Microwave-Assisted One-Pot method for detecting reducing gases: structural properties and sensing reversibility. Front. Chem. 8, 1–11 (2020). https://doi.org/10.3389/fchem.2020.00456

    Article  Google Scholar 

  10. M. Rashad, N.M. Shaalan, A.M. Abd-Elnaiem, Degradation enhancement of methylene blue on ZnO nanocombs synthesized by thermal evaporation technique. Desalin. Water Treat. (2016). https://doi.org/10.1080/19443994.2016.1163511

    Article  Google Scholar 

  11. E.F. Abo Zeid, A.M. Nassar, M.A. Hussein, M.M. Alam, A.M. Asiri, H.H. Hegazy, M.M. Rahman, Mixed oxides CuO-NiO fabricated for selective detection of 2-Aminophenol by electrochemical approach. J. Mater. Res. Technol. 9, 1457–1467 (2020). https://doi.org/10.1016/j.jmrt.2019.11.071

    Article  Google Scholar 

  12. H. Lv, H. Sun, Electrospun Foamlike NiO/CuO nanocomposites with superior catalytic activity toward the reduction of 4-Nitrophenol. ACS Omega 5, 11324–11332 (2020). https://doi.org/10.1021/acsomega.0c00122

    Article  Google Scholar 

  13. N.M. Shaalan, D. Hamad, O. Saber, Co-Evaporated CuO-Doped In(2)O(3) 1D-nanostructure for reversible CH(4) detection at low temperatures: structural phase change and properties. Mater. Basel Switzerland 12, 4073 (2019). https://doi.org/10.3390/ma12244073

    Article  Google Scholar 

  14. N.M. Shaalan, D. Hamad, A. Aljaafari, A.Y. Abdel Latief, M.A. Abdel Rahim, Preparation and characterization of developed CuxSn1–xO2 nanocomposite and its promising methane gas sensing properties. Sensors (2019). https://doi.org/10.3390/s19102257

    Article  Google Scholar 

  15. S.M. Mali, S.S. Narwade, Y.H. Navale, V.B. Patil, B.R. Sathe, Facile synthesis of highly porous CuO nanoplates (NPs) for ultrasensitive and highly selective nitrogen dioxide/nitrite sensing. RSC Adv. 9, 5742–5747 (2019). https://doi.org/10.1039/c8ra09299k

    Article  ADS  Google Scholar 

  16. N.M. Shaalan, M. Rashad, M.A. Abdel-Rahim, CuO nanoparticles synthesized by microwave-assisted method for methane sensing. Opt. Quantum Electron. 48, 2–12 (2016). https://doi.org/10.1007/s11082-016-0802-9

    Article  Google Scholar 

  17. S.S. Narwade, S.M. Mali, R.V. Digraskar, V.S. Sapner, B.R. Sathe, Ni/NiO@rGO as an efficient bifunctional electrocatalyst for enhanced overall water splitting reactions. Int. J. Hydrogen Energy 44, 27001–27009 (2019). https://doi.org/10.1016/j.ijhydene.2019.08.147

    Article  Google Scholar 

  18. S.H. Xu, G.T. Fei, H.M. Ouyang, G.L. Shang, X.D. Gao, L. De Zhang, Necklace-like NiO-CuO heterogeneous composite hollow nanostructure: preparation, formation mechanism and structure control. Sci. Rep. 7, 1–13 (2017). https://doi.org/10.1038/s41598-017-00157-0

    Article  ADS  Google Scholar 

  19. S. Joshi, M. Mudigere, L. Krishnamurthy, G.L. Shekar, Growth and morphological studies of NiO/CuO/ZnO based nanostructured thin films for photovoltaic applications. Chem. Pap. 68, 1584–1592 (2014). https://doi.org/10.2478/s11696-014-0596-9

    Article  Google Scholar 

  20. H. Ghanbarabadi, B. Khoshandam, Investigating the Effect of CuO/NiO and CuO/CoO relative composition on the reduction time of (CuO)x -(NiO)(1–x) and (CuO)x-(Co3O4)(1–x) with methane Gas as the reducing agent in the synthesis of nano-bimetallic Nix -Cu(1–x) and Cux -Co(1–x). Period. Polytech. Chem. Eng. 63, 388–396 (2019). https://doi.org/10.3311/PPch.13395

    Article  Google Scholar 

  21. H. Xu, J. Zhang, A.U. Rehman, L. Gong, K. Kan, L. Li, K. Shi, Synthesis of NiO@CuO nanocomposite as high-performance gas sensing material for NO 2 at room temperature. Appl. Surf. Sci. 412, 230–237 (2017). https://doi.org/10.1016/j.apsusc.2017.03.213

    Article  ADS  Google Scholar 

  22. J. Liu, H. Peng, W. Liu, X. Xu, X. Wang, C. Li, W. Zhou, P. Yuan, X. Chen, W. Zhang, H. Zhan, Tin modification on Ni/Al2O3: Designing potent coke-resistant catalysts for the dry reforming of methane. Chem. Cat. Chem. 6, 2095–2104 (2014). https://doi.org/10.1002/cctc.201402091

    Article  Google Scholar 

  23. L. Sui, T. Yu, D. Zhao, X. Cheng, X. Zhang, P. Wang, Y. Xu, S. Gao, H. Zhao, Y. Gao, L. Huo, In situ deposited hierarchical CuO/NiO nanowall arrays film sensor with enhanced gas sensing performance to H2S. J. Hazard Mater. 385, 121570 (2020). https://doi.org/10.1016/j.jhazmat.2019.121570

    Article  Google Scholar 

  24. T.P. Mokoena, H.C. Swart, D.E. Motaung, A review on recent progress of p-type nickel oxide based gas sensors: future perspectives. J. Alloys Compd. 805, 267–294 (2019). https://doi.org/10.1016/j.jallcom.2019.06.329

    Article  Google Scholar 

  25. P. Scherrer, Göttinger Nachrichten Gesell 2, 98 (1918)

    Google Scholar 

  26. A.L. Patterson, The scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  MATH  ADS  Google Scholar 

  27. MA Salam S Sufian T Murugesan (2014) Synthesis and characterization of nano-structured mixed oxides. Appl. Mech. Mater. 446–447: 196–200. Doi: https://doi.org/10.4028/www.scientific.net/AMM.446-447.196

  28. X. Xu, L. Li, F. Yu, H. Peng, X. Fang, X. Wang, Mesoporous high surface area NiO synthesized with soft templates: remarkable for catalytic CH4 deep oxidation. Mol. Catal. 441, 81–91 (2017). https://doi.org/10.1016/j.mcat.2017.08.005

    Article  Google Scholar 

  29. L.H. Ahrens, The use of ionization potentials Part 1. Ionic radii of the elements. Geochim. Cosmochim. Acta. 2, 155–169 (1952). https://doi.org/10.1016/0016-7037(52)90004-5

    Article  ADS  Google Scholar 

  30. N.M. Shaalan, M. Rashad, M.A. Abdel-Rahim, Repeatability of indium oxide gas sensors for detecting methane at low temperature. Mater. Sci. Semicond. Process. 56, 260–264 (2016). https://doi.org/10.1016/j.mssp.2016.09.007

    Article  Google Scholar 

  31. G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10, 5469–5502 (2010). https://doi.org/10.3390/s100605469

    Article  ADS  Google Scholar 

  32. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010). https://doi.org/10.3390/s100302088

    Article  ADS  Google Scholar 

  33. N.M. Shaalan, D. Hamad, A. Alshoaibi, A.Y. Abdel-Latief, M.A. Abdel-Rahim, Development of numerical analysis and methane sensing application of highly sensitive quantum crystals based on tin dioxide prepared by hydrothermal. J. Mater. Sci. Mater. Electron (2020). https://doi.org/10.1007/s10854-019-01505-8

    Article  Google Scholar 

  34. D Haridas, V Gupta (2012) Enhanced response characteristics of SnO 2 thin film based sensors loaded with Pd clusters for methane detection. Sens. Actuators B Chem. 166–167: 156–164. Doi: https://doi.org/10.1016/j.snb.2012.02.026

  35. A.H. Jayatissa, P. Samarasekara, K. Guo, Methane gas sensor application of cuprous oxide synthesized by thermal oxidation. Phys. Status Solidi Appl. Mater. Sci. 206, 332–337 (2009). https://doi.org/10.1002/pssa.200824126

    Article  ADS  Google Scholar 

  36. A. Umar, A.A. Ibrahim, U.T. Nakate, H. Albargi, M.A. Alsaiari, F. Ahmed, F.A. Alharthi, A. Ali Alghamdi, N. Al-Zaqri, Fabrication and characterization of CuO nanoplates based sensor device for ethanol gas sensing application. Chem. Phys. Lett. 763, 138204 (2021). https://doi.org/10.1016/j.cplett.2020.138204

    Article  Google Scholar 

  37. B. Ruhland, Th. Becker, G. Müller, Gas-kinetic interactions of nitrous oxides with SnO2 surfaces. Sensors and Actuators B: Chemical 50 (1), 85–94 (1998). https://doi.org/10.1016/S0925-4005(98)00160-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Shaalan or M. Rashad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaalan, N.M., Morsy, A.E.A., Abdel-Rahim, M.A. et al. Simple preparation of Ni/CuO nanocomposites with superior sensing activity toward the detection of methane gas. Appl. Phys. A 127, 455 (2021). https://doi.org/10.1007/s00339-021-04543-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04543-4

Keywords

Navigation