Skip to main content

PVA/gelatin-based hydrogel coating of nickel-titanium alloy for improved tissue-implant interface

Abstract

Nickel-titanium shape memory alloys have attracted notable interest for biomedical applications due to their unique properties. However, there are still some concerns on the potential release of nickel ions causing adverse reactions in-vivo at high concentrations. In this work, samples were coated with a polyvinyl alcohol/gelatin hydrogel. Coating stability, corrosion resistance and biocompatibility were investigated. Coated samples exhibited similar shape memory response to that of the uncoated substrates in wire form. Additionally, the hydrogel coating led to a decrease in the surface temperature and significantly improved the corrosion resistance of the shape memory substrate. The presence of the hydrogel layer does not affect the biocompatibility of the alloy while providing a semi-degradable, hydrophilic surface that forms a cushion at the tissue-implant interfaces.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. T. Duerig, A. Pelton, D. Stöckel, Mater. Sci. Eng. 273, 149 (1999)

    Google Scholar 

  2. K. Otsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Express, Cambridge, 1999).

    Google Scholar 

  3. L. Machado, M. Savi, Braz. J. Med. Biol. Res. 36, 683 (2003)

    Google Scholar 

  4. A.T. Tung, B.H. Park, D.H. Liang, G. Niemeyer, Sens. Actuators A Phys. 147, 83 (2008)

    Google Scholar 

  5. A. Vahidyeganeh, G. Simsek, S. Jabeen, O. Bebek, G.G. Yapici, Mater. Sci. Forum 887, 104 (2017)

    Google Scholar 

  6. N. Muhammad, D. Whitehead, A. Boor, W. Oppenlander, Z. Liu, L. Li, Appl. Phys. A 106, 607 (2012)

    ADS  Google Scholar 

  7. S. Kujala, J. Ryhänen, T. Jämsä, A. Danilov, J. Saaranen, A. Pramila, J. Tuukkanen, Biomaterials 23, 2535 (2002)

    Google Scholar 

  8. J. Khalil-Allafi, B. Amin-Ahmadi, M. Zare, Mater. Sci. Eng. C 30, 1112 (2010)

    Google Scholar 

  9. L. Jinlong, L. Tongxiang, W. Chen, D. Limin, Mater. Sci. Eng. C 63, 192 (2016)

    Google Scholar 

  10. L.A. Bravo, A.G. Cabanes, J.M. Manero, E. Ruperez, F.J. Gil, J. Mater. Sci. Mater. Med. 25, 555 (2014)

    Google Scholar 

  11. F.J. Garcia-Sanz, M.B. Mayor, J.L. Arias, J. Pou, B. Leon, M. Perez-Amor, J. Mater. Sci. Mater. Med. 8, 861 (1997)

    Google Scholar 

  12. P. Xu, G. Meng, L. Pershin, J. Mostaghimi, T.W. Coyle, J. Mater. Res. Technol. 62, 107 (2021)

    Google Scholar 

  13. S. Khamseh, E. Alibakhshi, B. Ramezanzadeh, M.G. Sari, Chem. Eng. J. 404, 126490 (2021)

    Google Scholar 

  14. D. Batalu, F. Nastase, M. Militaru, M. Gherghiceanu, P. Badica, J. Mater. Res. Technol. 8(1), 914–922 (2018)

    Google Scholar 

  15. E. Ruperez, J.M. Manero, L.A. Gonzalez, E. Espinar, F.J. Gil, Mater. Basel 9, 402 (2016)

    ADS  Google Scholar 

  16. J. Choi, D. Bogdanski, M. Köller, S.-A. Esenwein, D. Müller, G. Muhr, M. Epple, Biomaterials 24, 3689 (2003)

    Google Scholar 

  17. C.-F. Dunne, K. Roche, B. Twomey, K.-T. Stanton, Mater. Lett. 176, 185 (2016)

    Google Scholar 

  18. C. Gebelein, F. Koblitz, Biomedical and Dental Applications of Polymers (Springer, Berlin, 2013).

    Google Scholar 

  19. E. Caló, V.-V. Khutoryanskiy, Eur. Polym. J. 65, 252 (2015)

    Google Scholar 

  20. E.A. Kamoun, E.S. Kenawy, X. Chen, J. Adv. Res. 8, 217 (2017)

    Google Scholar 

  21. K. Pal, A.-K. Banthia, D.-K. Majumdar, AAPS Pharm. Sci. Tech. 8, 142 (2007)

    Google Scholar 

  22. S. Pawde, K. Deshmukh, J. Appl. Polym. Sci. 109, 3431 (2008)

    Google Scholar 

  23. H. Knopf-Marques, J. Barthes, L. Wolfova, B. Vidal, G. Koenig, J. Bacharouche, G.-G. Francius, H. Sadam, U. Liivas, P. Lavalle, ACS Omega 2, 918 (2017)

    Google Scholar 

  24. N.E. Vrana, P.A. Cahill, G.B. McGuinness, J. Biomed. Mater. Res. A. 94(4), 1080 (2010)

    Google Scholar 

  25. N.E. Vrana, K. Matsumura, S.H. Hyon, L.M. Geever, J.E. Kennedy, J.G. Lyons, C.L. Higginbotham, P.A. Cahill, G.B. McGuinness, J. Tissue Eng. Regen. Med. 6(4), 280 (2012)

    Google Scholar 

  26. P.K. Sahoo, P.K. Rana, S.K. Swain, Int. J. Polym. Mater. Polym. Biomater. 55, 65 (2006)

    Google Scholar 

  27. M. Pulat, N. Ugurlu, Soft Mater. 14(4), 217 (2016)

    Google Scholar 

  28. F. Mansfeld, The Polarization Resistance Technique for Measuring Corrosion Currents Advances in Corrosion Science and Technology (Springer, Boston, 1976), pp. 163–262

    Google Scholar 

  29. ISO 10993–5, Biological Evaluation of Medical Devices. (2009) Part 5

  30. X. Huang, Y. Liu, Scr. Mater. 45, 153 (2001)

    Google Scholar 

  31. H. Cheng, K. Yue, M. Kazemzadeh-Narbat, Y. Liu, A. Khalilpour, L. Bingyun, Y.S. Zhang, N. Annabi, A. Khademhosseini, Adv. Mater. Interfaces 9, 11428 (2017)

    Google Scholar 

  32. L. D’eramo, B. Chollet, M. Leman, E. Martwong, M. Li, H. Geisler, J. Dupire, M. Kerdraon, C. Vergne, F. Monti, Y. Tran, P. Tabeling, Microsyst. Nanoeng. 4, 17069 (2018)

    Google Scholar 

  33. R.T. Hassarati, W.F. Dueck, C. Tasche, P.M. Carter, L.A. Poole-Warren, R.A. Green, IEEE Trans. Neural Syst. Rehabil. Eng. 22(2), 411 (2014)

    Google Scholar 

  34. A. Niemczyk, M. El Fray, S.E. Franklin, Tribol. Int. 89, 54 (2015)

    Google Scholar 

  35. J. Barthes, P. Lagarrigue, V. Riabov, G. Lutzweiler, J. Kirsch, C. Muller, E.-J. Courtial, C. Marquette, F. Projetti, J. Kzhyskowska, P. Lavalle, N.E. Vrana, A. Dupret-Bories, Biomaterials 268, 120549 (2021)

    Google Scholar 

  36. E. Larraneta, S. Stewart, M. Ervine, R. Al-Kasasbeh, R.F. Donnely, J. Funct. Biomater. 9, 13 (2018)

    Google Scholar 

  37. N. Kashyap, N. Kumar, M.N.V.R. Kumar, Crit. Rev. Ther. Drug Carr. Syst. 22, 107 (2005)

    Google Scholar 

  38. J. Maia, M.P. Ribeiro, C. Ventura, R.A. Carvalho, I.J. Correia, M.H. Gil, ActaBiomater. 2009, 5 (1948)

    Google Scholar 

  39. M. Trzaskowski, B. Butruk, T. Ciach, Chall. Mod. Technol. 2(1), 19 (2011)

    Google Scholar 

  40. J. Wen, J. Lei, J. Chen, J. Guo, Y. Li, L. Li, Chem. Engr. J. 5(2), 123742 (2020)

    Google Scholar 

  41. S. Devikala, P. Kamaraj, M. Arthanareeswari, Mater. Today Proc. 5, 8672 (2018)

    Google Scholar 

  42. H.W. Zhu, J.N. Zhang, P. Su, T. Liu, C. He, D. Feng, H. Wang, Soft. Matter. 16, 709 (2020)

    ADS  Google Scholar 

  43. M. Saveleva, A. Vladescu, C. Cotrut, L.V. Meeren, M. Surmeneva, R. Surmenev, B. Parakhonskiy, A.G. Skirtach, J. Mater. Chem. B. 7, 6778 (2019)

    Google Scholar 

  44. E. Ruperez, J.M. Manero, L.A.B. Gonzalez, E. Espinar, F.J. Gil, Materials 9, 402 (2016)

    ADS  Google Scholar 

  45. G.M. Simsek, G.G. Yapici, Mater. Sci. Forum 986, 55–60 (2020)

    Google Scholar 

  46. M. Chembath, J.N. Balaraju, M. Sujata, Surf. Coat. Technol. 302, 302–309 (2016)

    Google Scholar 

  47. K.W.K. Yeung, R.W.Y. Poon, X.Y. Liu, J.P.Y. Ho, J. Biomed. Mater. Res. A 75A, 256 (2005)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from The Scientific and Technological Research Council of Turkey (TUBITAK) within Project no: 113S096 and the EU Horizon 2020 research and innovation programme under Grant agreement No: 760921 (PANBioRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Yapici.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simsek, G.M., Barthes, J., Muller, C. et al. PVA/gelatin-based hydrogel coating of nickel-titanium alloy for improved tissue-implant interface. Appl. Phys. A 127, 387 (2021). https://doi.org/10.1007/s00339-021-04542-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04542-5

Keywords

  • Shape memory alloys
  • NiTi
  • Coating
  • Hydrogel
  • Biocompatibility
  • Corrosion