Skip to main content

Advertisement

Log in

Mechanical anomalies in mercury oxalate and the deformation of the mercury cube coordination environment under pressure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In a recent work, the extremely anomalous mechanical behavior of the anhydrous zinc and cadmium oxalates was discovered. In this paper, the mechanical behavior of the anhydrous mercury oxalate containing the remaining transition metal element of the IIB group of periodic table is investigated. The crystal structure and elastic properties of \({\text{HgC}}_{2} {\text{O}}_{4}\) are determined using first-principles solid-state methods. Although the structure of mercury oxalate and the coordination environment of mercury in this compound are radically different to those of the zinc and cadmium oxalates, a great degree of similarity in their mechanical behavior is unexpectedly found. The mechanical behavior of mercury oxalate is anomalous and exhibits the negative Poisson’s ratio (NPR) and the negative linear compressibility (NLC) phenomena. Under isotropic pressure, the compressibility along the [1,0,0] crystallographic direction is negative in the pressure range from − 2.50 to 0.25 GPa. For external pressures applied in the direction of minimum compressibility, which coincides with [1,0,0], mercury oxalate exhibits negative volumetric compressibilities from 0.22 to 1.40 GPa. The increase in volume in this material is significant for pressures larger than 1.0 GPa, and the compressibility becomes − 95.6 \({\text{TPa}}^{ - 1}\) at P = 1.36 GPa. As for the zinc and cadmium oxalates, the increase in volume is so drastic that mercury oxalate becomes unstable for pressures larger than 1.4 GPa. The NLC effect in mercury oxalate is due to the highly deformable character of the cube coordination polyhedron of mercury. The coordination structure becomes octahedral near P = 1.3 GPa, just before its structural instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Colmenero, Mechanical properties of anhydrous oxalic acid and oxalic acid dihydrate. Phys Chem Chem Phys 21, 2673–2690 (2019)

    Article  Google Scholar 

  2. F. Colmenero, Negative area compressibility in oxalic acid dihydrate. Mater Lett 245, 25–28 (2019)

    Article  Google Scholar 

  3. F. Colmenero, Silver oxalate: mechanical properties and extreme negative mechanical phenomena. Adv Theor Simul 2, 1900040 (2019)

    Article  Google Scholar 

  4. F. Colmenero, X. Jiang, X. Li, Y. Li, Z. Lin, Negative area compressibility in silver oxalate. J Mater Sci 56, 269–277 (2021)

    Article  ADS  Google Scholar 

  5. F. Colmenero, V. Timón, Extreme negative mechanical phenomena in the zinc and cadmium anhydrous metal oxalates and lead oxalate dihydrate. J Mater Sci 55, 218–236 (2020)

    Article  ADS  Google Scholar 

  6. F. Colmenero, Negative linear compressibility in nanoporous metal–organic frameworks rationalized by the empty channel structural mechanism. Phys Chem Chem Phys 23, 8508–8524 (2021)

    Article  Google Scholar 

  7. Y. Qiao, K. Wang, H. Yuan, K. Yang, B. Zou, Negative linear compressibility in organic mineral ammonium oxalate monohydrate with hydrogen bonding wine-rack motifs. J Phys Chem Lett 6, 2755–2760 (2015)

    Article  Google Scholar 

  8. R.H. Baughman, S. Stafström, C. Cui, S.O. Dantas, Materials with negative compressibilities in one or more dimensions. Science 279, 1522–1524 (1998)

    Article  ADS  Google Scholar 

  9. A.B. Cairns, L. Goodwin, Negative linear compressibility. Phys Chem Chem Phys 17, 20449–20465 (2015)

    Article  Google Scholar 

  10. R.S. Lakes, Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987)

    Article  ADS  Google Scholar 

  11. K.W. Wojciechowski, Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers. Mol Phys 61, 1247–1258 (1987)

    Article  ADS  Google Scholar 

  12. R.S. Lakes, Negative-Poisson’s-ratio materials: auxetic solids. Annu Rev Mater Res 47, 63–81 (2017)

    Article  Google Scholar 

  13. I. Loa, K. Syassen, R. Kremer, U. Schwarz, M. Hanfland, Structural properties of under high pressure. Phys Rev B 60, R6945–R6948 (1999)

    Article  ADS  Google Scholar 

  14. M.Y. Seyidov, R.A. Suleymanov, Negative thermal expansion due to negative area compressibility in semiconductor with layered crystalline structure. J Appl Phys 108, 063540 (2010)

    Article  ADS  Google Scholar 

  15. W. Cai, A. Gładysiak, M. Anioła, V.J. Smith, L.J. Barbour, A. Katrusiak, Giant negative area compressibility tunable in a soft, porous framework material. J Am Chem Soc 137, 9296–9301 (2015)

    Article  Google Scholar 

  16. G. Feng, W. Zhang, L. Dong, W. Li, W. Cai, W. Wei, L. Ji, Z. Lin, P. Lu, Negative area compressibility of a hydrogen bonded two-dimensional material. Chem Sci 10, 1309–1315 (2019)

    Article  Google Scholar 

  17. F. Colmenero, J. Sejkora, J. Plášil, Crystal structure, infrared spectrum and elastic anomalies in tuperssuatsiaite. Sci Rep 10, 7510 (2020)

    Article  ADS  Google Scholar 

  18. Z.G. Nicolaou, A.E. Motter, Mechanical metamaterials with negative compressibility transitions. Nat Mater 11, 608–613 (2012)

    Article  ADS  Google Scholar 

  19. G.M. Spinks, G.G. Wallace, L.S. Fifield, L.R. Dalton, A. Mazzoldi, D. De Rossi, I. Khayrullin, R.H. Baughman, Pneumatic carbon nanotube actuators. Adv Mater 14, 1728–1732 (2002)

    Article  Google Scholar 

  20. A.E. Aliev, J. Oh, M.E. Kozlov, A.A. Kuznetsov, S. Fang, A.F. Fonseca, R. Ovalle, M.D. Lima, M.H. Haque, Y.N. Gartstein, M. Zhang, A.A. Zakhidov, R.H. Baughman, Giantstroke, superelastic carbon nanotube aerogel muscles. Science 323, 1575–1578 (2009)

    Article  ADS  Google Scholar 

  21. K.E. Evans, A. Alderson, Auxetic Materials: Functional Materials and Structures from Lateral Thinking! Adv Mater 12, 617–628 (2000)

    Article  Google Scholar 

  22. N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, X. Zhang, Ultrasonic metamaterials with negative modulus. Nat Mater 5, 452–456 (2006)

    Article  ADS  Google Scholar 

  23. W. Uhoya, G. Tsoi, Y.K. Vohra, M.A. McGuire, A.S. Sefat, B.C. Sales, D. Mandrus, S.T. Weir, Anomalous compressibility effects and superconductivity of under high pressures. J Phys Condens Matter 22, 292202 (2010)

    Article  Google Scholar 

  24. X. Jiang, M.S. Molokeev, L. Dong, Z. Dong, N. Wang, L. Kang, X. Li, Y. Li, C. Tian, S. Peng, W. Li, Z. Lin, Anomalous mechanical materials squeezing three-dimensional volume compressibility into one dimension. Nat Commun. 11, 5593 (2020)

    Article  ADS  Google Scholar 

  25. A.N. Christensen, P. Norby, J.C. Hanson, A crystal structure determination of from synchrotron X-ray and neutron powder diffraction data. Z Kristallograph 209, 874–877 (2010)

    Google Scholar 

  26. A. Kolezynski, A. Małecki, Theoretical studies of electronic and crystal structure properties of anhydrous mercury oxalate. J Therm Anal Calorim 101, 499–504 (2010)

    Article  Google Scholar 

  27. K.W. Wojciechowski, P. Pieranski, J. Malecki, An instability in a hard-disc system in a narrow box (Helmholtz free energy). J Phys A 16, 2197–2203 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  28. V.Y. Antonchenko, V.V. Ilyin, N.B. Makovsky, A.N. Pavlov, V.P. Sokhan, On the nature of disjoining pressure oscillations in fluid films. Mol Phys 1984, 345–355 (1984)

    Article  ADS  Google Scholar 

  29. S. Hirotsu, Softening of bulk modulus and negative Poisson’s ratio near the volume phase transition of polymer Gels. J Chem Phys 94, 3949–3957 (1991)

    Article  ADS  Google Scholar 

  30. C. Li, Z. Hu, Y. Li, Poisson’s ratio in polymer gels near the phase-transition point. Phys Rev E 48, 603–606 (1993)

    Article  ADS  Google Scholar 

  31. R.E.A. McKnight, T. Moxon, A. Buckley, P.A. Taylor, T.W. Darling, M.A. Carpenter, Grain size dependence of elastic anomalies accompanying the alpha-beta phase transition in polycrystalline quartz. J Phys Condens Matter 20, 075229 (2008)

    Article  ADS  Google Scholar 

  32. L. Dong, D.S. Stone, R.S. Lakes, Softening of bulk modulus and negative Poisson’s ratio in barium titanate ceramic near the curie point. Phil Mag Lett 90, 23–33 (2010)

    Article  ADS  Google Scholar 

  33. D. Li, T.M. Jaglinski, D.S. Stone, R.S. Lakes, Temperature insensitive negative Poisson’s ratios in isotropic alloys near a morphotropic phase boundary. Appl Phys Lett 101, 251903 (2012)

    Article  ADS  Google Scholar 

  34. D.T. Ho, C.T. Nguyen, S.Y. Kwon, S.Y. Kim, Auxeticity in metals and periodic metallic porous structures induced by elastic instabilities. Phys Status Solidi B 256, 1800122 (2019)

    Article  ADS  Google Scholar 

  35. E.J. Baran, Review: Natural oxalates and their analogous synthetic complexes. J Coord Chem 67, 3734–3768 (2014)

    Article  Google Scholar 

  36. H.C. Lin, P. Lin, C.A. Lu, S.F. Wang, Effects of silver oxalate additions on the physical characteristics of low-temperature-curing MOD silver paste for thick-film applications. Microelectron Eng 86, 2316–2319 (2009)

    Article  Google Scholar 

  37. F. Nacimiento, R. Alcántara, J.L. Tirado, Cobalt and tin oxalates and PAN mixture as a new electrode material for lithium ion batteries. Electroanal Chem 642, 143–149 (2010)

    Article  Google Scholar 

  38. B. Sengupta, C.A. Tamboli, R. Sengupta, Synthesis of nickel oxalate particles in the confined internal droplets of W/O emulsions and in systems without space confinement. Chem Eng J 169, 379–389 (2011)

    Article  Google Scholar 

  39. T. Ahmad, A. Ganguly, J. Ahmed, A.K. Ganguli, O. Abdullah, A. Alhartomy, Nanorods of transition metal oxalates: a versatile route to the oxide nanoparticles. Arab J Chem 4, 125–134 (2011)

    Article  Google Scholar 

  40. M.C. López, J.L. Tirado, C. Pérez Vicente, Structural and comparative electrochemical study of M(II) oxalates, M = Mn, Fe Co, Ni, Cu, Zn. J Power Sources 227, 65–71 (2013)

    Article  Google Scholar 

  41. Y. Zhang, W. Zhu, H. He, A. Zheng, Synthesis of lanthanum oxalate hierarchical micro-particles and nano-tubes. J. Exp. Nanosci. 9, 851–859 (2014)

    Article  Google Scholar 

  42. X.L. Zhou, Z.G. Yan, X.D. Han, From ascorbic acid to oxalate: Hydrothermal synthesis of copper oxalate microspheres and conversion to oxide. Mater Lett 118, 39–42 (2014)

    Article  Google Scholar 

  43. Y. Dong, X. Li, S. Liu, Q. Zhua, J.G. Li, X. Suna, Facile synthesis of high silver content MOD ink by using silver oxalate precursor for inkjet printing applications. Thin Solid Films 589, 381–387 (2015)

    Article  ADS  Google Scholar 

  44. W.A. Elijah Ang, Y.L. Cheah, C.L. Wong, H.H. Hng, S. Madhavi, One-pot solvothermal synthesis of and their application as anode materials for lithium-ion batteries. J. Alloys Compd 638, 324–333 (2015)

    Article  Google Scholar 

  45. J. Xu, L. He, H. Liu, T. Han, Y. Wang, C. Zhang, Y. Zhang, Controlled synthesis of porous anhydrous cobalt oxalate nanorods with high reversible capacity and excellent cycling stability. Electrochim Acta 170, 85–91 (2015)

    Article  ADS  Google Scholar 

  46. K. Sarada, K.R. Vijisha, K. Muraleedharan, Exploration of the thermal decomposition of oxalates of copper and silver by experimental and computational methods. J Anal Appl Pyrol 120, 207–214 (2016)

    Article  Google Scholar 

  47. L. Tao, Y.L. Guohua, M, Guidance evolution mechanism of nickel oxalate microstructure for formation of polycrystalline nickel nano-fibers. Rare Metal Mater Eng 46, 2371–2374 (2017)

    Article  Google Scholar 

  48. J.M. Ferreira, M. Oliveira, G.F. Trindade, L.C.L. Santos, C.R. Tomachuk, M.A. Baker, Development and characterisation of zinc oxalate conversion coatings on zinc. Corros Sci 137, 13–32 (2018)

    Article  Google Scholar 

  49. R. Stencel, J. Kasperski, W. Pakieła, A. Mertas, E. Bobela, I. Barszczewska-Rybarek, G. Chladek, Properties of experimental dental composites containing antibacterial silver-releasing filler. Materials 11, 1031–1057 (2018)

    Article  ADS  Google Scholar 

  50. D. Dollimore, The thermal decomposition of oxalates. A review. Thermochim Acta 117, 331–363 (1987)

    Article  Google Scholar 

  51. B.V. L’vov, Kinetics and mechanism of thermal decomposition of nickel, manganese, silver, mercury and lead oxalates. Thermochim Acta 364, 99–109 (2000)

    Article  Google Scholar 

  52. V.V. Boldyrev, Thermal decomposition of silver oxalate. Thermochim Acta 388, 63–90 (2002)

    Article  Google Scholar 

  53. B. Małecka, E. Drozdz-Ciesla, A. Małecki, Mechanism and kinetics of thermal decomposition of zinc oxalate. Thermochim Acta 423, 13–18 (2004)

    Article  Google Scholar 

  54. A.K. Galwey, M.E. Brown, An appreciation of the chemical approach of V. V. Boldyrev to the study of the decomposition of solids. J Therm Anal Cal 90, 9–22 (2007)

    Article  Google Scholar 

  55. A. Kolezynsk, A. Małecki, First principles studies of thermal decomposition of anhydrous zinc oxalate. J Therm Anal Cal 96, 645–651 (2009)

    Article  Google Scholar 

  56. A. Kolezynsk, A. Małecki, Theoretical studies of thermal decomposition of anhydrous cadmium and silver oxalates. J Therm Anal Cal 96, 167–173 (2009)

    Article  Google Scholar 

  57. A.N. Puzan, V.N. Baumer, D.V. Lisovytskiy, P.V. Mateychenko, Structure disordering and thermal decomposition of manganese oxalate dihydrate. J Solid State Chem 260, 87–94 (2018)

    Article  ADS  Google Scholar 

  58. A.N. Puzan, V.N. Baumer, D.V. Lisovytskiy, P.V. Mateychenko, Structure transformations in nickel oxalate dihydrate and nickel formate dihydrate during thermal decomposition. J Solid State Chem 266, 133–142 (2018)

    Article  ADS  Google Scholar 

  59. F. Delogu, Estimation of the mass of powder trapped at collision during ball milling from the kinetics of the mechanically activated decomposition of Ag oxalate. Mater Chem Phys 137, 297–302 (2012)

    Article  Google Scholar 

  60. G.A. Ligios, A.M. Bertetto, F. Delogu, A systematic investigation of the mechanochemical decomposition of Ag oxalate in rod drop experiments. J Alloys Compd 554, 426–431 (2013)

    Article  Google Scholar 

  61. F. Delogu, Mechanochemical decomposition of Ag and Ni oxalates. Mater Chem Phys 147, 629–635 (2014)

    Article  Google Scholar 

  62. F. Delogu, Ag–Ni Janus nanoparticles by mechanochemical decomposition of Ag and Ni oxalates. Acta Mater 66, 388–395 (2014)

    Article  ADS  Google Scholar 

  63. S. Zhang, Y. Tang, B. Vlahovic, A Review on preparation and applications of silver-containing nanofibers. Nanoscale Res Lett 11, 80–87 (2016)

    Article  ADS  Google Scholar 

  64. S.B. Khoo, S.X. Guo, Rapidly renewable and reproducible mercury film coated carbon paste electrode for anodic stripping voltammetry. Electroanal 14, 813–822 (2002)

    Article  Google Scholar 

  65. R.J. Mascarenhas, A.K. Satpati, S. Yellappa, B.S. Sherigara, A.K. Bopiah, Wax-impregnated carbon paste electrode modified with mercuric oxalate for the simultaneous determination of heavy metal ions in medicinal plants and ayurvedic tablets. Anal Sci 22, 871–875 (2006)

    Article  Google Scholar 

  66. M.C. Payne, M.P. Teter, D.C. Ailan, A. Arias, S.J.D. Joannopoulo, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64, 1045–1097 (1992)

    Article  ADS  Google Scholar 

  67. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys Rev Lett 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  68. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100, 136406 (2008)

    Article  ADS  Google Scholar 

  69. L.J. Bonales, F. Colmenero, J. Cobos, V. Timón, Spectroscopic raman characterization of rutherfordine: a combined dft and experimental study. Phys Chem Chem Phys 18, 16575–16584 (2016)

    Article  Google Scholar 

  70. F. Colmenero, L.J. Bonales, J. Cobos, V. Timón, Density functional theory study of the thermodynamic and raman vibrational properties of - polymorph. J Phys Chem C 121, 14507–14516 (2017)

    Article  Google Scholar 

  71. F. Colmenero, L.J. Bonales, J. Cobos, V. Timón, Thermodynamic and mechanical properties of rutherfordine mineral based on density functional theory. J Phys Chem C 121, 5994–6001 (2017)

    Article  Google Scholar 

  72. F. Colmenero, V. Timón, Study of the structural, vibrational and thermodynamic properties of natroxalate mineral using density functional theory. J. Solid State Chem 263, 131–140 (2018)

    Article  ADS  Google Scholar 

  73. P.F. Weck, M.E. Gordon, J.A. Greathouse, C.R. Bryan, S.P. Meserole, M.A. Rodriguez, M.C. Payne, E. Kim, Infrared and Raman spectroscopy of -: a comprehensive density functional perturbation theory and experimental study. J Raman Spectrosc 49, 1373–1384 (2018)

    Article  ADS  Google Scholar 

  74. L. Malakkal, A. Prasad, D. Oladimeji, E. Jossou, J. Ranasinghe, B. Szpunar, L. Bichler, J. Szpunar, Atomistic and experimental study on thermal conductivity of bulk and porous cerium dioxide. Sci Rep 9, 6326 (2019)

    Article  ADS  Google Scholar 

  75. F. Colmenero, J. Plášil, J. Sejkora, The crystal structures and mechanical properties of the uranyl carbonate minerals roubaultite, fontanite, sharpite, widenmannite, grimselite and cejkaite. Inorg Chem Front 7, 4197–4221 (2020)

    Article  Google Scholar 

  76. F. Colmenero, Thermodynamic properties of the uranyl carbonate minerals roubaultite, fontanite, widenmannite, grimselite, čejkaite and bayleyite. Inorg Chem Front 7, 4160–4179 (2020)

    Article  Google Scholar 

  77. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, First Principles Methods Using CASTEP. Z Kristallogr 220, 567–570 (2005)

    Article  Google Scholar 

  78. N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43, 1993–2006 (1991)

    Article  ADS  Google Scholar 

  79. B.G. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen, Relaxation of crystals with the Quasi-Newton method. J Comput Phys 131, 233–240 (1997)

    Article  ADS  MATH  Google Scholar 

  80. H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integration. Phys Rev B 13, 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  81. R. Yu, J. Zhu, H.Q. Ye, Calculations of single-crystal elastic constants made simple. Comput Phys Commun 181, 671–675 (2010)

    Article  ADS  MATH  Google Scholar 

  82. D.R. Squire, A.R. Holt, W.R. Hoover, Isothermal elastic constants for argon Theory and Monte Carlo calculations. Physica 42, 388–397 (1969)

    Article  ADS  Google Scholar 

  83. M. Parrinello, A. Rahman, Strain fluctuations and elastic-constants. J Chem Phys 76, 2662–2666 (1982)

    Article  ADS  Google Scholar 

  84. J.R. Ray, Elastic constants and statistical ensembles in molecular dynamics. Comput Phys Rep 8, 109–152 (1988)

    Article  ADS  Google Scholar 

  85. K.W. Wojciechowski, K.V. Tretiakov, Computer simulation of elastic properties of solids under pressure. Comp Phys Commun 121–122, 528–530 (1999)

    Article  ADS  Google Scholar 

  86. K. Van Workum, J. De Pablo, Improved simulation method for the calculation of the elastic constants of crystalline and amorphous systems using strain fluctuations. Phys Rev E 67, 011505 (2003)

    Article  ADS  Google Scholar 

  87. E. Voyiatzis, Mechanical properties and elastic constants of atomistic systems through the stress-fluctuation formalism. Comput Phys Commun 184, 27–33 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. M. Xiong, X. Zhao, N. Li, H. Xu, General energy-strain scheme for accurate evaluation of the Born elasticity term for solid and liquid systems under finite temperature and pressure conditions. Comp Phys Commun 247, 106940 (2020)

    Article  Google Scholar 

  89. F. Birch, Finite Elastic Strain of Cubic Crystal. Phys Rev 71, 809–824 (1947)

    Article  ADS  MATH  Google Scholar 

  90. R.J. Angel, Equations of State. Rev Mineral Geochem 41, 35–60 (2000)

    Article  ADS  Google Scholar 

  91. EOSFIT 5.2 software, http://www.ccp14.ac.uk/ccp/webmirrors/ross-angel/rja/soft/.10.2138/rmg.2000.41.2 (accessed September 2020)

  92. A. Marmier, Z.A.D. Lethbridge, R.I. Walton, C.W. Smith, S.C. Parker, K.E. Evans, ElAM: a computer program for the analysis and representation of anisotropic elastic properties. Comput Phys Commun 181, 2102–2115 (2010)

    Article  ADS  MATH  Google Scholar 

  93. P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, F.A. Armstrong, Inorganic Chemistry, 5th edn. (Oxford University Press, New York, 2010), p. 206

    Google Scholar 

  94. R.T. Downs, K.L. Bartelmehs, G.V. Gibbs, M.B. Boisen, Interactive software for calculating and displaying x-ray or neutron powder diffractometer patterns of crystalline materials. Am Mineral 78, 1104–1107 (1993)

    Google Scholar 

  95. P.F. Weck, E. Kim, E.C. Buck, On the mechanical stability of uranyl peroxide hydrates: implications for nuclear fuel degradation. RSC Adv 5, 79090–79097 (2015)

    Article  ADS  Google Scholar 

  96. M. Born, On the stability of crystal lattices. I. Math Proc Camb Phil Soc 36, 160–172 (1940)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. F. Mouhat, F.X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B 90, 224104 (2014)

    Article  ADS  Google Scholar 

  98. W. Voigt, Lehrbuch Der Kristallphysik (Teubner, Leipzig, 1962).

    MATH  Google Scholar 

  99. A. Reuss, Berechnung der fliessgrenze von mischkristallen auf grund der plastizitatsbedingung fur einkristalle. Z Angew Math Mech 9, 49–58 (1929)

    Article  MATH  Google Scholar 

  100. R. Hill, The elastic behaviour of a crystalline aggregate. Proc Phys Soc Lond A 65, 349–354 (1952)

    Article  ADS  Google Scholar 

  101. F. Colmenero, Anomalous mechanical behavior of the deltic, squaric and croconic cyclic oxocarbon acids. Mater Res Express 6, 045610 (2019)

    Article  ADS  Google Scholar 

  102. F. Colmenero, L.J. Bonales, J. Cobos, V. Timón, Structural, mechanical and vibrational study of uranyl silicate mineral soddyite by DFT calculations. J Solid State Chem 253, 249–257 (2017)

    Article  ADS  Google Scholar 

  103. F. Colmenero, J. Cobos, V. Timón, Periodic DFT study of the structure, raman spectrum and mechanical properties of schoepite mineral. Inorg Chem 57, 4470–4481 (2018)

    Article  Google Scholar 

  104. F. Colmenero, A.M. Fernández, J. Cobos, V. Timón, Becquerelite mineral phase: crystal structure and thermodynamic and mechanic stability by using periodic DFT. RSC Adv 8, 24599–24616 (2018)

    Article  ADS  Google Scholar 

  105. F. Colmenero, J. Plášil, J. Cobos, J. Sejkora, V. Timón, J. Čejka, L.J. Bonales, Crystal structure, hydrogen bonding, mechanical properties and Raman spectrum of the lead uranyl silicate monohydrate mineral kasolite. RSC Adv 9, 15323–15334 (2019)

    Article  ADS  Google Scholar 

  106. S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Phil Mag 45, 823–843 (1954)

    Article  Google Scholar 

  107. Y. Bouhadda, S. Djella, M. Bououdina, N. Fenineche, Y. Boudouma, Structural and elastic properties of for hydrogen storage applications. J Alloys Compd 534, 20–24 (2012)

    Article  Google Scholar 

  108. H. Niu, P. Wei, Y. Sun, C.X. Chen, C. Franchini, D. Li, Y. Li, Electronic, optical, and mechanical properties of superhard cold-compressed phases of carbon. Appl Phys Lett 99, 031901 (2011)

    Article  ADS  Google Scholar 

  109. S.I. Ranganathan, M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys Rev Lett 101, 055504 (2008)

    Article  ADS  Google Scholar 

  110. K.W. Wojciechowski, K.V. Tretiakov, M. Kowalik, Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions. Phys Rev E 67, 036121 (2003)

    Article  ADS  Google Scholar 

  111. A. Tkatchenko, M. Scheffler, Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102, 073005 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Supercomputer time provided by the CTI-CSIC center is greatly acknowledged. One of the authors (VT) was supported by the Ministry of Science, Innovation and Universities within the Project FIS2016-77726-C3-1-P. The authors wish to dedicate this work In Memoriam to an extremely intelligent and unifying scientist, Prof. Rafael Escribano, for his teaching and friendship.

This study was funded by the Ministry of Science, Innovation and Universities (grant number FIS2016-77726-C3-1-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Colmenero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 568 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colmenero, F., Timón, V. Mechanical anomalies in mercury oxalate and the deformation of the mercury cube coordination environment under pressure. Appl. Phys. A 127, 395 (2021). https://doi.org/10.1007/s00339-021-04527-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04527-4

Navigation