Skip to main content

Advertisement

Log in

Non-Volatile In-Ga-Zn-O Transistors for Neuromorphic Computing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hardware neural networks (HNNs) can be constructed by placing synaptic devices in a crossbar array, and these systems may overcome the inherent inefficiency of conventional computing systems. In this work, non-volatile In-Ga-Zn-O transistors were designed for use in HNNs. The In-Ga-Zn-O transistors consist of a naturally oxidized nanothick Al2O3/ion gel stacking dielectric, in which the gate electric field induces positive charge trapping effect could pull the subthreshold swing down to the value of 32.9 mV/decade, which is much lower than the theoretical limit of 60 mV/decade at room temperature. A highly repeatable and robust hysteresis behavior was observed in the transfer curve of the devices. These three-terminal In-Ga-Zn-O transistors could implement important memristive synaptic functions, including non-volatile memory, synaptic plasticity, and long-term potentiation/depression. A simulated HNN built from these In-Ga-Zn-O transistors with long-term potentiation/depression and optimized amplification factor exhibits 84% recognition accurate of handwritten data. The work illustrates an important application of energy-efficient HNNs by using high-performance non-volatile neuromorphic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Ueda, Y. Nishitani, Y. Kaneko, A. Omote, PLoS ONE 9, e112659 (2014)

    Article  ADS  Google Scholar 

  2. Q. Wan, M.T. Sharbati, J.R. Erickson, Y. Du, F. Xiong, Adv. Mater. Technol. 4, 1900037 (2019)

    Article  Google Scholar 

  3. J. Sun, Y. Fu, Q. Wan, J. Phys. D Appl. Phys. 51, 314004 (2018)

    Article  Google Scholar 

  4. J. Sun, Y. Choi, Y.J. Choi, S. Kim, J.H. Park, S. Lee, J.H. Cho, Adv. Mater. 31, 1803831 (2019)

    Article  Google Scholar 

  5. H. Tsai, S. Ambrogio, P. Narayanan, R.M. Shelby, G.W. Burr, J. Phys. D Appl. Phys. 51, 283001 (2018)

    Article  Google Scholar 

  6. J.X. Shen, D.S. Shang, Y.S. Chai, S.G. Wang, B.G. Shen, Y. Sun, Adv Mater. 30, e1706717 (2018)

    Article  Google Scholar 

  7. S. Seo et al., Nat Commun 9, 5106 (2018)

    Article  ADS  Google Scholar 

  8. J. Wang, Y. Chen, L.-A. Kong, Y. Fu, Y. Gao, J. Sun, Appl. Phys. Lett. 113, 151101 (2018)

    Article  ADS  Google Scholar 

  9. Y. He, J. Sun, C. Qian, L.-A. Kong, G. Gou, H. Li, Appl. Phys. A 123, 277 (2017)

    Article  ADS  Google Scholar 

  10. D.S. Jeong, C.S. Hwang, Adv Mater 30, e1704729 (2018)

    Article  Google Scholar 

  11. C. Qian, L.-A. Kong, J. Yang, Y. Gao, J. Sun, Appl. Phys. Lett. 110, 083302 (2017)

    Article  ADS  Google Scholar 

  12. Q. Xia, J.J. Yang, Nat Mater 18, 309–323 (2019)

    Article  ADS  Google Scholar 

  13. C.-H. Kim, S. Lee, S.Y. Woo, W.-M. Kang, S. Lim, J.-H. Bae, J. Kim, J.-H. Lee, IEEE Trans. Electron Devices 65, 1774–1780 (2018)

    Article  ADS  Google Scholar 

  14. D.H. Kang et al., Adv. Sci. 6, 1901265 (2019)

    Article  Google Scholar 

  15. X. Wu, V. Saxena, K. Zhu, IEEE J. Emerg. Selected Topics Circuits Syst. 5, 254–266 (2015)

    Article  ADS  Google Scholar 

  16. Y. Van De Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria, S. Agarwal, M.J. Marinella, A. Alec Talin, A. Salleo, Nat. Mater. 16, 414–418 (2017)

    Article  ADS  Google Scholar 

  17. M.M. Shulaker, G. Hills, R.S. Park, R.T. Howe, K. Saraswat, H.P. Wong, S. Mitra, Nature 547, 74–78 (2017)

    Article  ADS  Google Scholar 

  18. X. Lin, Y. Rivenson, N.T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, A. Ozcan, Science 361, 1004–1008 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Z. Lv et al., Adv. Func. Mater. 29, 1902374 (2019)

    Article  Google Scholar 

  20. J. Misra, I. Saha, Neurocomputing 74, 239–255 (2010)

    Article  Google Scholar 

  21. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10, 1297–1301 (2010)

    Article  ADS  Google Scholar 

  22. Z. Xiao, J. Huang, Adv. Electron. Mater. 2, 1600100 (2016)

    Article  Google Scholar 

  23. X. Yan et al., Adv. Func. Mater. 28, 1803728 (2018)

    Article  Google Scholar 

  24. G.W. Burr et al., IEEE Trans. Electron Dev. 62, 3498–3507 (2015)

    Article  ADS  Google Scholar 

  25. W. Zhang, R. Mazzarello, M. Wuttig, E. Ma, Nat. Rev. Mater. 4, 150–168 (2019)

    Article  ADS  Google Scholar 

  26. S.B. Eryilmaz, D. Kuzum, R. Jeyasingh, S. Kim, M. Brightsky, C. Lam, H.-S.P. Wong, Front. Neurosci. 8, 205 (2014)

    Article  Google Scholar 

  27. M.K. Kim, J.S. Lee, Nano Lett 19, 2044–2050 (2019)

    Article  ADS  Google Scholar 

  28. M. Jerry et al., J. Phys. D Appl. Phys. 51, 434001 (2018)

    Article  Google Scholar 

  29. S. Boyn et al., Nat Commun 8, 14736 (2017)

    Article  ADS  Google Scholar 

  30. Y. Kaneko, Y. Nishitani, M. Ueda, IEEE Trans. Electron Devices 61, 2827–2833 (2014)

    Article  ADS  Google Scholar 

  31. S. Oh, T. Kim, M. Kwak, J. Song, J. Woo, S. Jeon, I.K. Yoo, H. Hwang, IEEE Electron Device Lett. 38, 732–735 (2017)

    Article  ADS  Google Scholar 

  32. W. Liu, J. Sun, W. Qiu, Y. Chen, Y. Huang, J. Wang, J. Yang, Nanoscale 11, 21740–21747 (2019)

    Article  Google Scholar 

  33. L.-A. Kong, J. Sun, C. Qian, C. Wang, J. Yang, Y. Gao, Org. Electron. 44, 25–31 (2017)

    Article  Google Scholar 

  34. W. Alquraishi, Y. Fu, W. Qiu, J. Wang, Y. Chen, L.-A. Kong, J. Sun, Y. Gao, Org. Electron. 71, 72–78 (2019)

    Article  Google Scholar 

  35. L.Q. Zhu, C.J. Wan, L.Q. Guo, Y. Shi, Q. Wan, Nat. Commun. 5, 1–7 (2014)

    ADS  Google Scholar 

  36. S. Kim, B. Choi, M. Lim, J. Yoon, J. Lee, H.-D. Kim, S.-J. Choi, ACS Nano 11, 2814–2822 (2017)

    Article  Google Scholar 

  37. I. Sanchez Esqueda et al., ACS Nano 12, 7352–7361 (2018)

    Article  Google Scholar 

  38. S. Ham, S. Choi, H. Cho, S.I. Na, G. Wang, Adv. Func. Mater. 29, 1806646 (2019)

    Article  Google Scholar 

  39. J. Hur et al., Adv. Func. Mater. 28, 1804844 (2018)

    Article  Google Scholar 

  40. E.J. Fuller et al., Science 364, 570–574 (2019)

    Article  ADS  Google Scholar 

  41. K. Han, S. Samanta, S. Xu, Y. Wu, X. Gong, IEEE Trans. Electron Devices 68, 118–124 (2020)

    Article  ADS  Google Scholar 

  42. S. Samanta, K. Han, C. Sun, C. Wang, A. Kumar, A.V.-Y. Thean, X. Gong, IEEE Trans. Electron Devices 68, 1050–1056 (2021)

    Article  ADS  Google Scholar 

  43. M. Si, Z. Lin, A. Charnas, D.Y. Peide, IEEE Electron Device Lett. 42, 184–187 (2020)

    Article  ADS  Google Scholar 

  44. H. Park, M.A. Mastro, M.J. Tadjer, J. Kim, Adv. Electron. Mater. 5, 1900333 (2019)

    Article  Google Scholar 

  45. V.K. Sangwan, H.-S. Lee, H. Bergeron, I. Balla, M.E. Beck, K.-S. Chen, M.C. Hersam, Nature 554, 500–504 (2018)

    Article  ADS  Google Scholar 

  46. Y. Yang, H. Du, Q. Xue, X. Wei, Z. Yang, C. Xu, D. Lin, W. Jie, J. Hao, Nano Energy 57, 566–573 (2019)

    Article  Google Scholar 

  47. A. Daus, C. Vogt, N. Münzenrieder, L. Petti, S. Knobelspies, G. Cantarella, M. Luisier, G.A. Salvatore, G. Tröster, J. Appl. Phys. 120, 244501 (2016)

    Article  ADS  Google Scholar 

  48. A. Daus, C. Vogt, N. Münzenrieder, L. Petti, S. Knobelspies, G. Cantarella, M. Luisier, G.A. Salvatore, G. Tröster, IEEE Trans. Electron Devices 64, 2789–2796 (2017)

    Article  ADS  Google Scholar 

  49. J. Sun et al., Adv. Func. Mater. 28, 1804397 (2018)

    Article  Google Scholar 

  50. C.S. Yang, D.S. Shang, N. Liu, E.J. Fuller, S. Agrawal, A.A. Talin, Y.Q. Li, B.G. Shen, Y. Sun, Adv. Func. Mater. 28, 1804170 (2018)

    Article  Google Scholar 

  51. L. Deng, IEEE Signal Process. Mag. 29, 141–142 (2012)

    Article  ADS  Google Scholar 

  52. X.-X. Niu, C.Y. Suen, Pattern Recogn. 45, 1318–1325 (2012)

    Article  ADS  Google Scholar 

  53. Cilimkovic M 2015 Institute of Technology Blanchardstown, Blanchardstown Road North Dublin 15

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (61975241, 51673214) and the National Key Research and Development Program of China (2017YFA0206600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Sun or Junliang Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 688 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Qiu, W., Liu, W. et al. Non-Volatile In-Ga-Zn-O Transistors for Neuromorphic Computing. Appl. Phys. A 127, 356 (2021). https://doi.org/10.1007/s00339-021-04512-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04512-x

Keywords

Navigation