Skip to main content
Log in

Magnetic nano- and micro-particles based on Gd-substituted magnetite with improved colloidal stability

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A series of Fe3-xGdxO4 (x = 0, 0.1, 0.2) nanoparticles with an average diameter of around 8 nm were prepared by the coprecipitation method and coated by citric acid (CA). The nanoparticles show superparamagnetic behavior at room temperature and transition to a blocked state, at a temperature from ~ 89 K to ~ 213 K, depending on Gd concentration. The saturation magnetization of Fe3-xGdxO4 tended to drop for samples with a higher content of Gd. High colloidal stability is mandatory in medical applications of magnetic nanoparticles, and here we demonstrate a new procedure for its improvement. A colloidal sample of Fe3O4@CA was mechanically milled, after which dynamic light scattering and zeta potential measurements were used to monitor the hydrodynamic size and colloidal stability of the acquired suspensions. After 90 min of milling, the average hydrodynamic diameter decreased by 40%, and size distribution changed from polymodal to monomodal, while the negative zeta potential increased from − 30.5 mV to − 52.8 mV. Additionally, Fe2.80Gd0.20O4@CA nanoparticles were embedded in human serum albumin to produce magnetic microspheres (MMS), which could be used as a drug delivery platform. FE-SEM images showed that magnetic nanoparticles form clusters within MMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Jun, J. Seo, J. Cheon, Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc. Chem. Res. 41, 197 (2008). https://doi.org/10.1021/ar700121f

    Article  Google Scholar 

  2. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 36, R167 (2003). https://doi.org/10.1088/0022-3727/36/13/201

    Article  ADS  Google Scholar 

  3. F. Spizzo, P. Sgarbossa, E. Sieni, A. Semenzato, F. Dughiero, M. Forzan, R. Bertani, L. Del Bianco, Synthesis of ferrofluids made of iron oxide nanoflowers: Interplay between carrier fluid and magnetic properties. Nanomaterials 7, 373 (2017). https://doi.org/10.3390/nano7110373

    Article  Google Scholar 

  4. R. Tietze, J. Zaloga, H. Unterweger, S. Lyer, R.P. Friedrich, C. Janko, M. Pöttler, S. Dürr, C. Alexiou, Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun. 468, 463 (2015). https://doi.org/10.1016/j.bbrc.2015.08.022

    Article  Google Scholar 

  5. S. Carregal-Romero, P. Guardia, X. Yu, R. Hartmann, T. Pellegrino, W.J. Parak, Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules. Nanoscale 7, 570 (2015). https://doi.org/10.1039/c4nr04055d

    Article  ADS  Google Scholar 

  6. O.M. Lemine, A. Alanazi, E.L. Albert, M. Hjiri, M.O. M’hamed, S.A. Alrub, A. Alkaoud, C. Abdullah, γ-Fe2O3/Gd2O3-chitosan magnetic nanocomposite for hyperthermia application: structural, magnetic, heating efficiency and cytotoxicity studies. Appl. Phys. A 126, 471 (2020). https://doi.org/10.1007/s00339-020-03649-5

    Article  ADS  Google Scholar 

  7. S. Dutz, R. Hergt, Magnetic particle hyperthermia—a promising tumour therapy? Nanotechnology 25, 452001 (2014). https://doi.org/10.1088/0957-4484/25/45/452001

    Article  ADS  Google Scholar 

  8. C. Martinez-Boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias, P. Guardia, A. Cabot, L. Yedra, S. Estradé, F. Peiró, Z. Saghi, P.A. Midgley, I. Conde-Leborán, D. Serantes, D. Baldomir, Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 3, 1652 (2013). https://doi.org/10.1038/srep01652

    Article  Google Scholar 

  9. P. Tartaj, M.P. Morales, T. Gonzalez-Carreño, S. Veintemillas-Verdaguer, C.J. Serna, The iron oxides strike back: from biomedical applications to energy storage devices and photoelectrochemical water splitting. Adv. Mater. 23, 5243 (2011). https://doi.org/10.1002/adma.201101368

    Article  Google Scholar 

  10. K. Hola, Z. Markova, G. Zoppellaro, J. Tucek, R. Zboril, Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv. 33, 1162 (2015). https://doi.org/10.1016/j.biotechadv.2015.02.003

    Article  Google Scholar 

  11. D.S. Mérel, M.L.T. Do, S. Gaillard, P. Dupau, J.L. Renaud, Iron-catalyzed reduction of carboxylic and carbonic acid derivatives. Coord. Chem. Rev. 288, 50 (2015). https://doi.org/10.1016/j.ccr.2015.01.008

    Article  Google Scholar 

  12. Y. Zhang, S. Xu, H. Xia, F. Zheng, Facile synthesis of Fe3O4@C hollow nanospheres and their application in polluted water treatment. Solid State Sci. 61, 16–26 (2016). https://doi.org/10.1016/j.solidstatesciences.2016.09.001

    Article  ADS  Google Scholar 

  13. S. Oztuna, F. Eylul, O. Unal, E. Erdem, H.Y. Acar, U. Unal, Layer-by-layer grown electrodes composed of cationic Fe3O4 nanoparticles and graphene oxide nanosheets for electrochemical energy storage devices. J. Phys. Chem. C 123(6), 3393–3401 (2019). https://doi.org/10.1021/acs.jpcc.8b11772

    Article  Google Scholar 

  14. G.V. Williams, T. Prakash, J. Kennedy, S.V. Chong, S. Rubanov, Spin-dependent tunnelling in magnetite nanoparticles. J. Magn. Magn. Mater 460, 229–233 (2018). https://doi.org/10.1016/j.jmmm.2018.04.017

    Article  ADS  Google Scholar 

  15. T. Prakash, G.V.M. Williams, J. Kennedy, S. Rubanov, High spin-dependent tunneling magnetoresistance in magnetite powders made by arc-discharge. J. Appl. Phys. 120(12), 123905 (2016). https://doi.org/10.1063/1.4963293

    Article  ADS  Google Scholar 

  16. A. Joseph, S. Mathew, Ferrofluids: synthetic strategies, stabilization, physicochemical features, characterization, and applications. ChemPlusChem 79, 1382 (2014). https://doi.org/10.1002/cplu.201402202

    Article  Google Scholar 

  17. E. Amstad, M. Textor, E. Reimhult, Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale 3, 2819 (2011). https://doi.org/10.1039/c1nr10173k

    Article  ADS  Google Scholar 

  18. T.M. Allen, Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer. 2, 750 (2002). https://doi.org/10.1038/nrc903

    Article  Google Scholar 

  19. X. Zhang, J. Wang, Preparation of carbon coated Fe3O4 nanoparticles for magnetic separation of uranium. Solid State Sci. 75, 14–20 (2018). https://doi.org/10.1016/j.solidstatesciences.2017.11.003

    Article  ADS  Google Scholar 

  20. A. Hajdú, E. Illés, E. Tombácz, I. Borbáth, Surface charging, polyanionic coating and colloid stability of magnetite nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 347, 104 (2009). https://doi.org/10.1016/j.colsurfa.2008.12.039

    Article  Google Scholar 

  21. M.H. Ehsani, S. Esmaeili, M. Aghazadeh, P. Kameli, F. Shariatmadar Tehrani, I. Karimzadeh, An investigation on the impact of Al doping on the structural and magnetic properties of Fe3O4 nanoparticles. Appl. Phys. A 125, 280 (2019). https://doi.org/10.1007/s00339-019-2572-2

    Article  ADS  Google Scholar 

  22. X. Liang, X. Wang, J. Zhuang, Y. Chen, D. Wang, Y. Li, Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv. Funct. Mater. 16, 1805 (2006). https://doi.org/10.1002/adfm.200500884

    Article  Google Scholar 

  23. H. Zhang, V. Malik, S. Mallapragada, M. Akinc, Synthesis and characterization of Gd-doped magnetite nanoparticles. J. Magn. Magn. Mater. 423, 386 (2017). https://doi.org/10.1016/j.jmmm.2016.10.005

    Article  ADS  Google Scholar 

  24. F.J. Douglas, D.A. MacLaren, N. Maclean, I. Andreu, F.J. Kettles, F. Tuna, C.C. Berry, M. Castro, M. Murrie, Gadolinium-doped magnetite nanoparticles from a single-source precursor. RSC Adv. 6, 74500 (2016). https://doi.org/10.1039/C6RA18095G

    Article  ADS  Google Scholar 

  25. M. Bellusci, A. La Barbera, F. Padella, M. Mancuso, A. Pasquo, M.G. Grollino, G. Leter, E. Nardi, C. Cremisini, P. Giardullo, F. Pacchierotti, Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process. Int. J. Nanomed. 9, 1929 (2014). https://doi.org/10.2147/IJN.S56394

    Article  Google Scholar 

  26. U.O. Häfeli, G.J. Pauer, In vitro and in vivo toxicity of magnetic microspheres. J. Magn. Magn. Mater. 194, 76 (1999). https://doi.org/10.1016/S0304-8853(98)00560-5

    Article  ADS  Google Scholar 

  27. M. Radović, S. Vranješ-Đurić, N. Nikolić, D. Janković, G.F. Goya, T.E. Torres, M.P. Calatayud, I.J. Bruvera, M.R. Ibarra, V. Spasojević, B. Jančar, B. Antić, Development and evaluation of 90Y-labeled albumin microspheres loaded with magnetite nanoparticles for possible applications in cancer therapy. J. Mater. Chem. 22, 24017 (2012). https://doi.org/10.1039/c2jm35593k

    Article  Google Scholar 

  28. H.F.M. Cremers, G. Kwon, Y.H. Bae, S.W. Kim, R. Verrijk, H.P.J.M. Noteborn, J. Feijen, Preparation and characterization of albumin-heparin microspheres. Biomaterials (1994). https://doi.org/10.1016/0142-9612(94)90195-3

    Article  Google Scholar 

  29. G. Iacob, O. Rotariu, N.J.C. Strachan, U.O. Häfeli, Magnetizable needles and wires—modeling an efficient way to target magnetic microspheres in vivo. Biorheology 41, 599 (2004)

    Google Scholar 

  30. M. Kawashita, S. Domi, Y. Saito, M. Aoki, Y. Ebisawa, T. Kokubo, T. Saito, M. Takano, N. Araki, M. Hiraoka, In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field. J. Mater. Sci. Mater. Med. 19, 1897 (2008). https://doi.org/10.1007/s10856-007-3262-8

    Article  Google Scholar 

  31. A. Senyei, K. Widder, G. Czerlinski, Magnetic guidance of drug-carrying microspheres. J. Appl. Phys. 49, 3578 (1978). https://doi.org/10.1063/1.325219

    Article  ADS  Google Scholar 

  32. P. Ramana, J. Schejbal, K. Houthoofd, J. Martens, E. Adams, P. Augustijns, Z. Glatz, A. Van Schepdael, An improved design to capture magnetic microparticles for capillary electrophoresis based immobilized microenzyme reactors. Electrophoresis 39, 981 (2018). https://doi.org/10.1002/elps.201700434

    Article  Google Scholar 

  33. R. Bazak, M. Houri, S. El Achy, W. Hussein, T. Refaat, Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol. Clin. Oncol. (2014). https://doi.org/10.3892/mco.2014.356

    Article  Google Scholar 

  34. B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, Chichester, 2004). https://doi.org/10.1002/0470011149

    Book  Google Scholar 

  35. M.C. Franchini, G. Baldi, D. Bonacchi, D. Gentili, G. Giudetti, A. Lascialfari, M. Corti, P. Marmorato, J. Ponti, E. Micotti, U. Guerrini, L. Sironi, P. Gelosa, C. Ravagli, A. Ricci, Bovine serum albumin-based magnetic nanocarrier for MRI diagnosis and hyperthermic therapy: a potential theranostic approach against cancer. Small 6, 366 (2010). https://doi.org/10.1002/smll.200901689

    Article  Google Scholar 

  36. T. Ahn, J.H. Kim, H.M. Yang, J.W. Lee, J.D. Kim, Formation pathways of magnetite nanoparticles by coprecipitation method. J. Phys. Chem. C. 116, 6069 (2012). https://doi.org/10.1021/jp211843g

    Article  Google Scholar 

  37. W.S. Peternele, V. Monge Fuentes, M.L. Fascineli, J. Rodrigues Da Silva, R.C. Silva, C.M. Lucci, R. Bentes De Azevedo, Experimental investigation of the coprecipitation method: an approach to obtain magnetite and maghemite nanoparticles with improved properties. J. Nanomater. (2014). https://doi.org/10.1155/2014/682985

    Article  Google Scholar 

  38. G.F. Goya, Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling. Solid State Commun. 130, 783 (2004). https://doi.org/10.1016/j.ssc.2004.04.012

    Article  ADS  Google Scholar 

  39. V. Rathod, A.V. Anupama, R.V. Kumar, V.M. Jali, B. Sahoo, Correlated vibrations of the tetrahedral and octahedral complexes and splitting of the absorption bands in FTIR spectra of Li-Zn ferrites. Vib. Spectrosc. 92, 267–272 (2017). https://doi.org/10.1016/j.vibspec.2017.08.008

    Article  Google Scholar 

  40. M. Radović, M.P. Calatayud, G.F. Goya, M.R. Ibarra, B. Antić, V. Spasojević, N. Nikolić, D. Janković, M. Mirković, S. Vranješ-Đurić, Preparation and in vivo evaluation of multifunctional 90 Y-labeled magnetic nanoparticles designed for cancer therapy. J. Biomed. Mater. Res. Part A. 103, 126 (2015). https://doi.org/10.1002/jbm.a.35160

    Article  Google Scholar 

  41. V.A. Hackley, J.D. Clogston, Measuring the hydrodynamic size of nanoparticles in aqueous media using batch-mode dynamic light scattering. In characterization of nanoparticles intended for drug delivery. Humana Press 697, 35–52 (2011). https://doi.org/10.1007/978-1-60327-198-1_4

    Article  Google Scholar 

  42. A. Cervellino, R. Frison, G. Cernuto, A. Guagliardi, N. Masciocchi, Lattice parameters and site occupancy factors of magnetite–maghemite core–shell nanoparticles. Crit Study. J. Appl. Cryst. 47(5), 1755–1761 (2014). https://doi.org/10.1107/S1600576714019840

    Article  Google Scholar 

  43. J. Santoyo Salazar, L. Perez, O. De Abril, L. Truong Phuoc, D. Ihiawakrim, M. Vazquez, J.M. Greneche, S. Begin-Colin, G. Pourroy, Magnetic iron oxide nanoparticles in 10–40 nm range: composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chem. Mater. 23(6), 1379–1386 (2011). https://doi.org/10.1021/cm103188a

    Article  Google Scholar 

  44. Z. Cvejic, S. Rakic, A. Kremenovic, B. Antic, C. Jovalekic, P. Colomban, Nanosize ferrites obtained by ball milling: crystal structure, cation distribution, size-strain analysis and Raman investigations. Solid State Sci. 8(8), 908–915 (2006)

    Article  ADS  Google Scholar 

  45. M.D. Drahus, P. Jakes, E. Erdem, R.A. Eichel, Defect structure of the mixed ionic–electronic conducting Sr [Ti, Fe] Ox solid-solution system—Change in iron oxidation states and defect complexation. Solid State Ion. 184(1), 47–51 (2011). https://doi.org/10.1016/j.ssi.2010.09.045

    Article  Google Scholar 

  46. E. Erdem, M.D. Drahus, R.A. Eichel, H. Kungl, M.J. Hoffmann, A. Ozarowski, J. Van Tol, L.C. Brunel, Defect structure in" soft"(Gd, Fe)-codoped PZT 52.5/47.5 piezoelectric ceramics. Funct. Mater. Lett. 1(01), 7–11 (2008). https://doi.org/10.1142/S1793604708000034

    Article  Google Scholar 

  47. P. Drake, H.-J. Cho, P.-S. Shih, C.-H. Kao, K.-F. Lee, C.-H. Kuo, X.-Z. Lin, Y.-J. Lin, Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia. J. Mater. Chem. 17, 4914 (2007). https://doi.org/10.1039/b711962c

    Article  Google Scholar 

  48. C.-T. Chen, Y.-C. Chen, Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 77, 5912 (2005). https://doi.org/10.1021/ac050831t

    Article  Google Scholar 

  49. P. Allia, P. Tiberto, Dynamic effects of dipolar interactions on the magnetic behavior of magnetite nanoparticles. J. Nanoparticle Res. 13, 7277 (2011). https://doi.org/10.1007/s11051-011-0642-2

    Article  ADS  Google Scholar 

  50. G.F. Goya, T.S. Berquó, F.C. Fonseca, M.P. Morales, Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520 (2003). https://doi.org/10.1063/1.1599959

    Article  ADS  Google Scholar 

  51. R.W. Chantrell, J. Popplewell, S.W. Charles, Measurements of particle size distribution parameters in ferrofluids. IEEE Trans. Magn. 14, 975 (1978). https://doi.org/10.1109/TMAG.1978.1059918

    Article  ADS  Google Scholar 

  52. C. Binns, K.N. Trohidou, J. Bansmann, S.H. Baker, J.A. Blackman, J.-P. Bucher, D. Kechrakos, A. Kleibert, S. Louch, K.-H. Meiwes-Broer, G.M. Pastor, A. Perez, Y. Xie, The behaviour of nanostructured magnetic materials produced by depositing gas-phase nanoparticles. J. Phys. D. Appl. Phys. 38, R357 (2005). https://doi.org/10.1088/0022-3727/38/22/R01

    Article  Google Scholar 

  53. R.C. Woodward, J. Heeris, T.G. St Pierre, M. Saunders, E.P. Gilbert, M. Rutnakornpituk, Q. Zhang, J.S. Riffle, A comparison of methods for the measurement of the particle-size distribution of magnetic nanoparticles. J. Appl. Crystallogr. 40, s495 (2007). https://doi.org/10.1107/S002188980700091X

    Article  Google Scholar 

  54. V. Šepelák, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F.J. Litterst, I. Bergmann, K.D. Becker, Nonequilibrium cation distribution, canted spin arrangement, and enhanced magnetization in nanosized MgFe2O4 prepared by a one-step mechanochemical route. Chem. Mater. 18(13), 3057–3067 (2006). https://doi.org/10.1021/cm0514894

    Article  Google Scholar 

  55. B. Antic, M. Perovic, A. Kremenovic, J. Blanusa, V. Spasojevic, P. Vulic, L. Bessais, E.S. Bozin, An integrated study of thermal treatment effects on the microstructure and magnetic properties of Zn–ferrite nanoparticles. J. Phy. Condens. Matter 25(8), 086001 (2013). https://doi.org/10.1088/0953-8984/25/8/086001

    Article  ADS  Google Scholar 

  56. A. Ghosh, S. Paul, S. Raj, Magnetic properties of zinc-blende Cd1−xFexS nanoparticles: temperature and Fe-content dependence studies. J. Magn. Magn. Mater. 405, 238–243 (2016). https://doi.org/10.1016/j.jmmm.2015.12.067

    Article  ADS  Google Scholar 

  57. A. Ghosh, S. Paul, S. Raj, Understanding bifurcations in FC–ZFC magnetization of dilutely Fe3+ doped CdS nanoparticles. Solid State Commun. 208, 1–6 (2015). https://doi.org/10.1016/j.ssc.2015.02.010

    Article  ADS  Google Scholar 

  58. J. De, A.M. Umarji, K. Chattopadhyay, Origin of contamination and role of mechanochemistry during mechanical alloying: the case of Ag-Te alloys. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process 449, 1062 (2007). https://doi.org/10.1016/j.msea.2006.02.268

    Article  Google Scholar 

  59. R.D. Harding, Heterocoagulation in mixed dispersions—effect of particle size, size ratio, relative concentration, and surface potential of colloidal components. J. Colloid Interface Sci. 40, 164 (1972). https://doi.org/10.1016/0021-9797(72)90006-9

    Article  ADS  Google Scholar 

  60. M. Kosmulski, The significance of the points of zero charge of zirconium (hydr)oxide reported in the literature. J. Dispers. Sci. Technol. 23, 529 (2002). https://doi.org/10.1081/DIS-120014021

    Article  Google Scholar 

  61. E.M. Hotze, T. Phenrat, G.V. Lowry, Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 39, 1909 (2010). https://doi.org/10.2134/jeq2009.0462

    Article  Google Scholar 

Download references

Acknowledgment

The Ministry of Education, Science and Technological Development of Serbia and the Ministry of Education, Science, Research and Sport of the Slovak Republic supported this work financially through the bilateral project SK-SRB-18-0055. M. F. thanks to the Slovak Research and Development Agency (APP) for financially supported through the project No. DS-FR-19-0052. We thank prof. G. F. Goya and his team for performing SEM/FIB dual beam studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bratislav Antic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 649 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boskovic, M., Fabián, M., Vranjes-Djuric, S. et al. Magnetic nano- and micro-particles based on Gd-substituted magnetite with improved colloidal stability. Appl. Phys. A 127, 372 (2021). https://doi.org/10.1007/s00339-021-04509-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04509-6

Keywords

Navigation