Skip to main content

Advertisement

Log in

Tunable room temperature ferromagnetism and optical bandgap of CdS:Er nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 25 June 2021

This article has been updated

Abstract

A semiconductor compound, which portrays ferromagnetism with tunable optical and photoluminescence properties after a sensible doping of suitable dopant, is vital for modern spintronic and luminescent applications. In this sense, we fabricate CdS, Cd0.98Er0.02S, and Cd0.96Er0.04S nanoparticles (NPs) via an inexpensive co-precipitation way. No structural deformation was found in cubic CdS after Er (III) doping. The as-fabricated NPs demonstrated good crystallinity as well as slight changes in sizes varying 3 nm–7 nm. An X-ray photoelectron spectroscopy results confirmed that the impure-free nature of the prepared samples. A decreasing trend in the optical band gap was found by the increase in the doping level. The 1CdS NPs showed diamagnetic character, whereas the Er (III)-doped CdS NPs exhibited frail ferromagnetic character at room temperature, which slightly increased as a function of Er (III) concentration. Based on the literature, this is the initial magnetic report on the CdS:Er system and this will be very informative for the further magnetic investigations on the Er doping. Hence, the tunable optical and ferromagnetic magnetic properties of CdS:Er NPs demonstrated in this work may be beneficial for optoelectronic, solar cell and spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. T. Gregorkiewicz, D.T.X. Thao, Appl. Phys. Lett. 75, 4121 (1999)

    Article  ADS  Google Scholar 

  2. H. Shen, J. Pamulapati, M. Taysing, M.C. Wood, R.T. Lareau, M.H. Ervin, J.D. Mackenzie, C.R. Abernathy, S.J. Pearton, F. Ren, J.M. Zavada, Solid-State Electron. 43, 1231 (1999)

    Article  ADS  Google Scholar 

  3. R. Boyn, Phys. Status Solidi B 148, 11 (1988)

    Article  ADS  Google Scholar 

  4. R.K. Watts, W.C. Holton, Phys. Rev. 173, 417 (1968)

    Article  ADS  Google Scholar 

  5. A.N. Georgobiani, M.B. Kotljarevsky, V.V. Kidalov, I.V. Rogozin, U.A. Aminov, J. Cryst. Growth 214/215, 516 (2000)

  6. J. Dziesiaty, St. Müller, R. Boyn, Th. Buhrow, A. Klimakow, J. Kreissl, J. Phys.: Condens. Matter 7, 4271 (1995)

  7. K. Shivaji, S. Mani, P. Ponmurugan, Catherine, Suenne De Castro, Matthew Lloyd Davies, Mythili Gnanamangai Balasubramanian, Sudhagar Pitchaimuthu. ACS Appl. Nano Mater. 1, 1683 (2018)

    Article  Google Scholar 

  8. Christina M. Chang, Katherine L. Orchard, Benjamin C.M. Martindalea, Erwin Reisner, J. Mater. Chem. A 4, 2856 (2016)

  9. B. Poornaprakash, U. Chalapathi, P.T. Poojitha, S.V. Prabhakar Vattikuti, Si‑Hyun Park, J. Mater. Sci. Mater. Electron. 30, 8220 (2019)

  10. Aslam Khan, Mohd. Shkir, M.A. Manthrammel, V. Ganesh, I.S. Yahia, Mukhtar Ahmed, Ahmed Mohamed El-Toni, Ali Aldalbahi, Hamid Ghaithan, S. AlFaify, Ceram. Int. 45, 10133 (2019)

  11. B. Poornaprakash, U. Chalapathi, P.T. Poojitha, S.V. Prabhakar Vattikuti, Si-Hyun Park, Mater. Sci. Semicond. Process. 100, 73 (2019)

  12. B. Poornaprakash, U. Chalapathi, S.V. Prabhakar Vattikuti, A. Balakrishna, H.C. Swart, Youngsuk Suh, Si-Hyun Park, J. Mater. Sci. Mater. Electron. 29 (24), 20650 (2018)

  13. B. Poornaprakash, U. Chalapathi, Youngsuk Suh, S.V. Prabhakar Vattikuti, M. Siva Pratap Reddy, Si-Hyun Park, Ceram. Int. 44 (10), 11724 (2018)

  14. B. Poornaprakash, U. Chalapathi, Mirgender Kumar, P.T. Poojitha, J. Mater. Sci. Mater. Electron. 29 (3), 2316 (2018)

  15. B. Poornaprakash, U. Chalapathi, Maddaka Reddeppa, Si-Hyun Park. Superlattices Microstruct. 97, 104 (2016)

    Article  ADS  Google Scholar 

  16. H. Bai, Yu. Zhaoming Zhang, W.J. Guo, Nanoscale Res Lett. 7, 717 (2009)

    Article  ADS  Google Scholar 

  17. J.A. Dávila-Pintle, R. Lozada-Morales, M.R. Palomino-Merino, J.A. Rivera-Márquez, J. Appl. Phys. 101, 013712 (2007)

    Article  ADS  Google Scholar 

  18. Pradyumna Elavarthi, Astakala Anil Kumar, G. Murali, D. Amaranatha Reddy, K.R. Gunasekhar, J. Alloy. Comp. 656, 510 (2016)

  19. R Aruna Devi, M Latha, S. Velumani, Oza Goldie, P Reyes-Figueroa, M Rohini, IG Becerril-Juarez, Jae-Hyeong Lee, Junsin Yi, J. Nanosci. Nanotechnol. 15, 8434 (2015)

  20. MS Sajna, Sunil Thomas, KA Ann Mary, Cyriac Joseph, PR Biju, NV Unnikrishnan 2015 J. Lumin. 159, 55

  21. S. Qin, Y. Liu, Y. Zhou, T. Chai, J. Guo, J Mater Sci: Mater Electron. 28, 7609 (2017)

    Google Scholar 

  22. B Poornaprakash, U Chalapathi, PT Poojitha, SV Prabhakar Vattikuti, Si-Hyun Park 2019 J. Mater. Sci. Mater. Electron. 30, 8220

  23. P. Kumar, V. Sharma, A. Sarwa, A. Kumar, R. Goyal, K. Sachdev, S. Annapoorni, K. Asokana, D. Kanjilal, RSC Adv. 6(92), 89242 (2016)

    Article  ADS  Google Scholar 

  24. N.H. Patel, M.P. Deshpande, S.H. Chaki, Mater. Sci. Semicond. Process. 31, 272 (2015)

    Article  Google Scholar 

  25. G Giribabu, G Murali, D Amaranatha Reddy, Chunli Liu, RP Vijayalakshmi 2013 J. Alloys Compd. 581: 363

  26. Mohammed M. Obeid, Hamad R. Jappor, Kutaiba Al-Marzoki, Imad Ali Al-Hydary, Shaker J. Edrees, Majid M. Shukur 2019 RSC Adv 9, 33207

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea funded by the Ministry of Science, ICT and Fusion Research (NRF-20201G1A1014959) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1I1A3A01056567). This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Fusion Research (2018R1D1A1B07040603) and BK21 FOUR project funded by the Ministry of Education, Korea (4199990113966). The authors (Abdulaziz A. Al-Kheraif and Darshan Devang Divakar) are grateful to the deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. L. Kim, Mirgender Kumar or M. Siva Pratap Reddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poornaprakash, B., Mangiri, R., Al-Kheraif, A.A. et al. Tunable room temperature ferromagnetism and optical bandgap of CdS:Er nanoparticles. Appl. Phys. A 127, 359 (2021). https://doi.org/10.1007/s00339-021-04508-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04508-7

Keywords

Navigation