Effect of magnesium content and growth temperature on structural and optical properties of USCVD-grown MgZnO films


Magnesium zinc oxide (MgxZn1-xO) films (x < 0.4) have been grown by ultrasonic spray chemical vapor deposition on soda-lime glass substrates for different growth temperature and different Mg mole fractions (x). Effects of Mg content in the liquid solution and the effect of growth temperature on optical and structural properties of MgZnO films have been investigated with X-ray diffraction, atomic force microscope, and UV–visible spectrophotometry measurements. The growth temperature has a significant effect on determining the Mg mole fractions of MgZnO films. There is a linear correlation between the measured Mg mole fraction in the resulted grown structures and Mg content in the solution. The peak of (0002) diffraction for the grown samples has been shifted to the higher diffraction angles with increase in Mg content in the liquid solution and has also become stronger. The growth temperature and Mg content in a liquid solution are crucial parameters in the controlling Mg mole fraction of samples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    A. Mang, K. Reimann, Solid State Commun. 94, 251–254 (1995)

    ADS  Article  Google Scholar 

  2. 2.

    D.C. Reynolds, D.C. Look, B. Jogai, Solid State Commun. 99, 873–875 (1996)

    ADS  Article  Google Scholar 

  3. 3.

    D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Appl. Phys. Lett. 70, 2230–2232 (1997)

    ADS  Article  Google Scholar 

  4. 4.

    J.Y. Li, S.P. Chang, M.H. Hsu, S.J. Chang, I.E.E.E. Photon, Technol. Lett. 30(1), 59–62 (2017)

    Article  Google Scholar 

  5. 5.

    L. Peng, H. Hong, Y. Shi, X. Zhou, Y. Lin, J. Jia, J. Alloys Compd. 765, 355–361 (2018)

    Article  Google Scholar 

  6. 6.

    A. Wibowo, M.A. Marsudi, M.I. Amal, M.B. Ananda, R. Stephanie, H. Ardy, L.J. Diguna, RSC Adv. 10(70), 42838–42859 (2020)

    ADS  Article  Google Scholar 

  7. 7.

    R. Bao, C. Wang, Z. Peng, C. Ma, L. Dong, C. Pan, ACS Photonics 4(6), 1344–1349 (2017)

    Article  Google Scholar 

  8. 8.

    M.N.H. Mia, M.F. Pervez, M.K. Hossain, M.R. Rahman, M.J. Uddin, M.A. Al Mashud, H.K. Glosh, M. Hoq, Results Phys. 7, 2683–2691 (2017)

    ADS  Article  Google Scholar 

  9. 9.

    H.H. Chen, S. Brahma, C.P. Liu, J.L. Huang, Thin Solid Film 690, 137459 (2019)

    ADS  Article  Google Scholar 

  10. 10.

    J.W. Kim, H.S. Kang, J.H. Kim, S.Y. Lee, J.K. Lee, M. Nastasi, J. Appl. Phys. 100, 033701 (2006)

    ADS  Article  Google Scholar 

  11. 11.

    A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Segawa, Appl. Phys. Lett. 72, 2466–2468 (1998)

    ADS  Article  Google Scholar 

  12. 12.

    T. Takagi, H. Tanaka, S. Fujita, S. Fujita, Jpn. J. Appl. Phys. 42, 401 (2003)

    ADS  Article  Google Scholar 

  13. 13.

    F. Alema, B. Hertog, O. Ledyaev, D. Volovik, R. Miller, A. Osinsky, S. Bakhsi, W.V. Schoenfeld, Sens. Actuator A. Phys 249, 263–268 (2016)

    Article  Google Scholar 

  14. 14.

    M.M. Fan, K.W. Liu, X. Chen, Z.Z. Zhang, B.H. Li, H.F. Zhao, D.Z. Shen, J Mater Chem C 3, 313–317 (2015)

    Article  Google Scholar 

  15. 15.

    Z. Vashaei, T. Minegishi, H. Suzuki, T. Hanada, M.W. Cho, T. Yao, A. Setiawan, J. Appl. Phys. 98, 054911 (2005)

    ADS  Article  Google Scholar 

  16. 16.

    M. Suja, S.B. Bashar, B. Debnath, L. Su, W. Shi, R. Lake, J. Liu, Sci. Rep. 7(1), 1–9 (2017)

    Article  Google Scholar 

  17. 17.

    M. Zakria, P. Bove, D.J. Rogers, F.H. Teherani, E.V. Sandana, M.R. Phillips, C. Ton-That, J. of Mater. Chem. C 8(19), 6435–6441 (2020)

    Article  Google Scholar 

  18. 18.

    B.H. Kim, M.W. Kim, J.W. Kang, Y.S. Choi, B.J. Kim, S.J. Park, J. Alloys Compd. 757, 98–104 (2018)

    Article  Google Scholar 

  19. 19.

    Y. Zhu, Y. Zhang, L. Yan, D. Zhang, J. Zhou, S. Adimi, S. Ruan, J. Alloys Compd. 832, 155022 (2020)

    Article  Google Scholar 

  20. 20.

    F. Alema, O. Ledyaev, R. Miller, V. Beletsky, A. Osinsky, W.V. Schoenfeld, J. Cryst. Growth. 435, 6–11 (2016)

    ADS  Article  Google Scholar 

  21. 21.

    D. Thapa, J. Huso, J. Lapp, N. Rajabi, J.L. Morrison, M.D. McCluskey, L. Bergman, J. Mater. Sci. Mater. 29(19), 16782–16790 (2018)

    Article  Google Scholar 

  22. 22.

    H. Nishinaka, Y. Kamada, N. Kameyama, S. Fujita, Phys. Status Solidi (b) 247, 1460–1463 (2010)

    ADS  Article  Google Scholar 

  23. 23.

    P. Narin, E. Kutlu, G. Atmaca, A. Atilgan, A. Yildiz, S.B. Lisesivdin, Optik 168, 86–91 (2018)

    ADS  Article  Google Scholar 

  24. 24.

    C. Wang, D. Tang, S. Han, P. Cao, X. Liu, Y. Zeng, W. Liu, F. Jia, W.Y. Xu, D.L. Zhu, Y. Lu, Phys. Status Solidi (a) 215(11), 1700821 (2018)

    ADS  Article  Google Scholar 

  25. 25.

    S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan, V. Shen, Appl. Phys. Lett. 80, 1529–1531 (2002)

    ADS  Article  Google Scholar 

  26. 26.

    E. Kutlu-Narin, P. Narin, A. Yildiz, S.B. Lisesivdin, Mater. Sci. Eng. B 254, 114506 (2020)

    Article  Google Scholar 

  27. 27.

    A.A. Ashrafi, Y. Segawa, J. Vac. Sci. Technol. 23(5), 2030–2033 (2005)

    Article  Google Scholar 

  28. 28.

    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi (b) 15, 627–637 (1966)

    ADS  Article  Google Scholar 

  29. 29.

    Y. Kamada, T. Kawaharamura, H. Nishinaka, S. Fujita, Jpn. J. Appl. Phys. 45, 857 (2006)

    ADS  Article  Google Scholar 

  30. 30.

    C.W. Yao, H.P. Wu, M.Y. Ge, L. Yang, Y.W. Zeng, Y.W. Wang, J.Z. Jiang, Mater. Lett. 61, 3416–3420 (2007)

    Article  Google Scholar 

Download references


This work was supported by TUBITAK under Project No. 116F197. S. B. L was supported in part by the Distinguished Young Scientist Award of the Turkish Academy of Sciences (TUBA-GEBIP 2016). We would like thank to Assoc. Prof. Dr. G. Demirel from the department of Chemistry at Gazi University for UV–visible optical absorption measurements.

Author information



Corresponding author

Correspondence to E. Kutlu-Narin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kutlu-Narin, E., Narin, P., Yildiz, A. et al. Effect of magnesium content and growth temperature on structural and optical properties of USCVD-grown MgZnO films. Appl. Phys. A 127, 367 (2021). https://doi.org/10.1007/s00339-021-04507-8

Download citation


  • Oxides
  • Vapor deposition
  • Optical properties
  • Atomic force microscopy
  • Surface properties