Skip to main content
Log in

Guanidinium tin halide perovskites: structural, electronic, and thermodynamic properties by quantum chemical study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The orthorhombic phase of guanidinium tin halide perovskites C(NH2)3SnX3, X = Cl, Br, I has been studied by quantum chemical method. The lattice parameters are optimized to obtain the minimum energy using the density functional theory with the generalized gradient approximation, GGA-PBE. The Kohn–Sham electronic band structures have been computed; the materials have direct bandgaps of 3.00, 2.47, and 1.78 eV for the C(NH2)3SnCl3, C(NH2)3SnBr3, and C(NH2)3SnI3, respectively, situated at the gamma symmetry points. The projected densities of states are analyzed and the contribution of the p- and s-states of the tin and halogen atoms evaluated. For the GUASnX3 compounds, thermodynamic stability to different decomposition routes has been assessed and standard enthalpies of formation obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data collected have been included in the manuscript, and additional data are included in the Supplementary Information.

Code availability

The code used is Quantum Espresso and is freely available.

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  Google Scholar 

  2. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2(1), 1–7 (2012)

    Google Scholar 

  3. NREL (2020) Best Research-Cell Efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200104.pdf. Accessed 08 Apr. 2021

  4. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012)

    ADS  Google Scholar 

  5. H. Zhou, Q. Chen, G. Li, S. Luo, T.-b Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014)

    ADS  Google Scholar 

  6. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476 (2015)

    ADS  Google Scholar 

  7. X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X.C. Zeng, J. Huang, Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2(7), 1–9 (2017)

    Google Scholar 

  8. E. Aydin, M. De Bastiani, S. De Wolf, Defect and contact passivation for perovskite solar cells. Adv. Mater. 31(25), 1900428 (2019)

    Google Scholar 

  9. H. Zhang, Y. Wu, C. Shen, E. Li, C. Yan, W. Zhang, H. Tian, L. Han, W.H. Zhu, Efficient and stable chemical passivation on perovskite surface via bidentate anchoring. Adv. Energy Mater. 9(13), 1803573 (2019)

    Google Scholar 

  10. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460–466 (2019)

    ADS  Google Scholar 

  11. M. Shahbazi, H. Wang, Progress in research on the stability of organometal perovskite solar cells. Sol. Energy 123, 74–87 (2016)

    ADS  Google Scholar 

  12. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016)

    Google Scholar 

  13. D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351(6269), 151–155 (2016)

    ADS  Google Scholar 

  14. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.-P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206–209 (2016)

    ADS  Google Scholar 

  15. F. Jiang, D. Yang, Y. Jiang, T. Liu, X. Zhao, Y. Ming, B. Luo, F. Qin, J. Fan, H. Han, Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells. J. Am. Chem. Soc. 140(3), 1019–1027 (2018)

    Google Scholar 

  16. X.-G. Zhao, J.-H. Yang, Y. Fu, D. Yang, Q. Xu, L. Yu, S.-H. Wei, L. Zhang, Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139(7), 2630–2638 (2017)

    Google Scholar 

  17. Z. Shi, J. Guo, Y. Chen, Q. Li, Y. Pan, H. Zhang, Y. Xia, W. Huang, Lead-free organic-inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv. Mater. 29(16), 1605005 (2017)

    Google Scholar 

  18. L. Liang, P. Gao, Lead-free hybrid perovskite absorbers for viable application: Can we eat the cake and have it too? Adv. Sci. 5(2), 1700331 (2018)

    Google Scholar 

  19. Z. Xiao, W. Meng, J. Wang, D.B. Mitzi, Y. Yan, Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Mater. Horiz. 4(2), 206–216 (2017)

    Google Scholar 

  20. Y.-Y. Sun, J. Shi, J. Lian, W. Gao, M.L. Agiorgousis, P. Zhang, S. Zhang, Discovering lead-free perovskite solar materials with a split-anion approach. Nanoscale 8(12), 6284–6289 (2016)

    ADS  Google Scholar 

  21. B. Saparov, F. Hong, J.-P. Sun, H.-S. Duan, W. Meng, S. Cameron, I.G. Hill, Y. Yan, D.B. Mitzi, Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor. Chem. Mater. 27(16), 5622–5632 (2015)

    Google Scholar 

  22. E.T. McClure, M.R. Ball, W. Windl, P.M. Woodward, Cs2AgBiX6 (X= Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28(5), 1348–1354 (2016)

    Google Scholar 

  23. A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138(7), 2138–2141 (2016)

    Google Scholar 

  24. F. Hong, B. Saparov, W. Meng, Z. Xiao, D.B. Mitzi, Y. Yan, Viability of lead-free perovskites with mixed chalcogen and halogen anions for photovoltaic applications. J. Phys. Chem. C 120(12), 6435–6441 (2016)

    Google Scholar 

  25. C.N. Savory, A. Walsh, D.O. Scanlon, Can Pb-free halide double perovskites support high-efficiency solar cells? ACS Energy Lett. 1(5), 949–955 (2016)

    Google Scholar 

  26. J. Ge, C.R. Grice, Y. Yan, Cu-based quaternary chalcogenide Cu2BaSnS4 thin films acting as hole transport layers in inverted perovskite CH3NH3PbI3 solar cells. J. Mater. Chem. A 5(6), 2920–2928 (2017)

    Google Scholar 

  27. J.T. Dufton, A. Walsh, P.M. Panchmatia, L.M. Peter, D. Colombara, M.S. Islam, Structural and electronic properties of CuSbS2 and CuBiS2: potential absorber materials for thin-film solar cells. Phys. Chem. Chem. Phys. 14(20), 7229–7233 (2012)

    Google Scholar 

  28. Y. Yin, Y. Huang, Y. Wu, G. Chen, W.-J. Yin, S.-H. Wei, X. Gong, Exploring emerging photovoltaic materials beyond perovskite: the case of skutterudite. Chem. Mater. 29(21), 9429–9435 (2017)

    Google Scholar 

  29. W.J. Yin, T. Shi, Y. Yan, Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26(27), 4653–4658 (2014)

    Google Scholar 

  30. W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, S.-H. Wei, Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 3(17), 8926–8942 (2015)

    Google Scholar 

  31. W.-J. Yin, T. Shi, Y. Yan, Superior photovoltaic properties of lead halide perovskites: insights from first-principles theory. J. Phys. Chem. C 119(10), 5253–5264 (2015)

    Google Scholar 

  32. Y. Cho, A.M. Soufiani, J.S. Yun, J. Kim, D.S. Lee, J. Seidel, X. Deng, M.A. Green, S. Huang, A.W. Ho-Baillie, Mixed 3D–2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability. Adv. Energy Mater. 8(20), 1703392 (2018)

    Google Scholar 

  33. P. Chen, Y. Bai, S. Wang, M. Lyu, J.H. Yun, L. Wang, In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 28(17), 1706923 (2018)

    Google Scholar 

  34. S. Tang, Y. Deng, X. Zheng, Y. Bai, Y. Fang, Q. Dong, H. Wei, J. Huang, Composition engineering in doctor-blading of perovskite solar cells. Adv. Energy Mater. 7(18), 1700302 (2017)

    Google Scholar 

  35. D. Chi, S. Huang, M. Zhang, S. Mu, Y. Zhao, Y. Chen, J. You, Composition and interface engineering for efficient and thermally stable pb–sn mixed low-bandgap perovskite solar cells. Adv. Funct. Mater. 28(51), 1804603 (2018)

    Google Scholar 

  36. T. Matsui, T. Yamamoto, T. Nishihara, R. Morisawa, T. Yokoyama, T. Sekiguchi, T. Negami, Compositional engineering for thermally stable, highly efficient perovskite solar cells exceeding 20% power conversion efficiency with 85°C/85% 1000h stability. Adv. Mater. 31(10), 1806823 (2019)

    Google Scholar 

  37. Y. Pei, Y. Liu, F. Li, S. Bai, X. Jian, M. Liu, Unveiling property of hydrolysis-derived DMAPbI3 for perovskite devices: composition engineering, defect mitigation, and stability optimization. Iscience 15, 165–172 (2019)

    ADS  Google Scholar 

  38. S. Khalfin, Y. Bekenstein, Advances in lead-free double perovskite nanocrystals, engineering band-gaps and enhancing stability through composition tunability. Nanoscale 11(18), 8665–8679 (2019)

    Google Scholar 

  39. F. Wang, S. Bai, W. Tress, A. Hagfeldt, F. Gao, Defects engineering for high-performance perovskite solar cells. npj Flex. Electron. 2(1), 1–14 (2018)

    Google Scholar 

  40. L. Dimesso, A. Quintilla, Y.-M. Kim, U. Lemmer, W. Jaegermann, Investigation of formamidinium and guanidinium lead tri-iodide powders as precursors for solar cells. Mater. Sci. Eng. B 204, 27–33 (2016)

    Google Scholar 

  41. C.C. Stoumpos, L. Mao, C.D. Malliakas, M.G. Kanatzidis, Structure–band gap relationships in hexagonal polytypes and low-dimensional structures of hybrid tin iodide perovskites. Inorg. Chem. 56(1), 56–73 (2017)

    Google Scholar 

  42. A.D. Jodlowski, C. Roldán-Carmona, G. Grancini, M. Salado, M. Ralaiarisoa, S. Ahmad, N. Koch, L. Camacho, G. De Miguel, M.K. Nazeeruddin, Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nat. Energy 2(12), 972–979 (2017)

    ADS  Google Scholar 

  43. T. Kishimoto, A. Suzuki, N. Ueoka, T. Oku, Effects of guanidinium addition to CH3NH3PbI3-xClx perovskite photovoltaic devices. J. Ceram. Soc. Jpn. 127(7), 491–497 (2019)

    Google Scholar 

  44. S. Wu, Z. Li, J. Zhang, T. Liu, Z. Zhu, A.K.-Y. Jen, Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses. Chem. Commun. 55(30), 4315–4318 (2019)

    Google Scholar 

  45. Y. Zhang, J. Chen, X. Lian, M. Qin, J. Li, T.R. Andersen, X. Lu, G. Wu, H. Li, H. Chen, Highly efficient guanidinium-based quasi 2D perovskite solar cells via a two-step post-treatment process. Small Methods 3(11), 1900375 (2019)

    Google Scholar 

  46. R.D. Chavan, D. Prochowicz, M.M. Tavakoli, P. Yadav, C.K. Hong, Surface treatment of perovskite layer with guanidinium iodide leads to enhanced moisture stability and improved efficiency of perovskite solar cells. Adv. Mater. Interfaces 7(1), 2000105 (2020)

    Google Scholar 

  47. E. Vega, M. Mollar, B. Marí, Effect of guanidinium on the optical properties and structure of the methylammonium lead halide perovskite. J. Alloy. Compd. 739, 1059–1064 (2018)

    Google Scholar 

  48. N.K. McKinnon, D.C. Reeves, M.H. Akabas, 5-HT3 receptor ion size selectivity is a property of the transmembrane channel, not the cytoplasmic vestibule portals. J. Gen. Physiol. 138(4), 453–466 (2011)

    Google Scholar 

  49. M. Szafrański, Investigation of phase instabilities in guanidinium halogenoplumbates (II). Thermochim. Acta. 307(2), 177–183 (1997)

    Google Scholar 

  50. G. Giorgi, J.-I. Fujisawa, H. Segawa, K. Yamashita, Organic–inorganic hybrid lead iodide perovskite featuring zero dipole moment guanidinium cations: a theoretical analysis. J. Phys. Chem. C 119(9), 4694–4701 (2015)

    Google Scholar 

  51. G. Giorgi, K. Yamashita, Zero-dipole molecular organic cations in mixed organic–inorganic halide perovskites: possible chemical solution for the reported anomalous hysteresis in the current–voltage curve measurements. Nanotechnology 26(44), 442001 (2015)

    ADS  Google Scholar 

  52. N. De Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E.-P. Yao, Y. Liu, A. Schiffer, Y. Yang, Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells. Nano. Lett. 16(2), 1009–1016 (2016)

    ADS  Google Scholar 

  53. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009)

    Google Scholar 

  54. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    ADS  Google Scholar 

  55. C. Paschal, A. Pogrebnoi, T. Pogrebnaya, N. Seriani, Methylammonium tin iodide perovskite: structural, electronic and thermodynamic properties by a DFT study with different exchange-correlation functionals. SN Appl. Sci. 2(4), 1–9 (2020)

    Google Scholar 

  56. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29(46), 465901 (2017)

    Google Scholar 

  57. C. Angell, N. Sheppard, A. Yamaguchi, T. Shimanouchi, T. Miyazawa, S. Mizushima, The infra-red spectrum, structure, and normal vibrations of the guanidinium ion. Trans. Faraday Soc. 53, 589–600 (1957)

    Google Scholar 

  58. F. Chiarella, A. Zappettini, F. Licci, I. Borriello, G. Cantele, D. Ninno, A. Cassinese, R. Vaglio, Combined experimental and theoretical investigation of optical, structural, and electronic properties of CH3NH3SnX3 thin films (X= Cl, Br). Phys. Rev. B 77(4), 045129 (2008)

    ADS  Google Scholar 

  59. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1(1), 011002 (2013)

    ADS  Google Scholar 

  60. G. Hautier, C. Fischer, V. Ehrlacher, A. Jain, G. Ceder, Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50(2), 656–663 (2011)

    Google Scholar 

  61. M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics 4(1), 1–17 (2012)

    Google Scholar 

  62. K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41(3), 653–658 (2008)

    Google Scholar 

  63. D.B. Mitzi, Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M= Ge, Sn, Pb). Chem. Mater. 8(3), 791–800 (1996)

    Google Scholar 

  64. C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013)

    Google Scholar 

  65. P. Umari, E. Mosconi, F. De Angelis, Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467 (2014)

    Google Scholar 

  66. J.P. Perdew, W. Yang, K. Burke, Z. Yang, E.K. Gross, M. Scheffler, G.E. Scuseria, T.M. Henderson, I.Y. Zhang, A. Ruzsinszky, Understanding band gaps of solids in generalized Kohn-Sham theory. Proc. Natl. Acad. Sci. 114(11), 2801–2806 (2017)

    ADS  Google Scholar 

  67. Y. Takahashi, R. Obara, Z.-Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, K. Terakura, Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans. 40(20), 5563–5568 (2011)

    Google Scholar 

  68. I. Borriello, G. Cantele, D. Ninno, Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Phys. Rev. B 77(23), 235214 (2008)

    ADS  Google Scholar 

  69. J. Even, L. Pedesseau, J.M. Jancu, C. Katan, DFT and k·p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells. Phys. Status Solidi (RRL) Rapid Res. Lett. 8(1), 31–35 (2014)

    ADS  Google Scholar 

  70. J. Even, L. Pedesseau, J.-M. Jancu, C. Katan, Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4(17), 2999–3005 (2013)

    Google Scholar 

  71. D.B. Mitzi, C. Feild, Z. Schlesinger, R. Laibowitz, Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. J. Solid State Chem. 114(1), 159–163 (1995)

    ADS  Google Scholar 

  72. O. Nazarenko, M.R. Kotyrba, S. Yakunin, M. Wörle, B.M. Benin, G. Rainò, F. Krumeich, M. Kepenekian, J. Even, C. Katan, Guanidinium and mixed cesium-guanidinium tin (ii) bromides: effects of quantum confinement and out-of-plane octahedral tilting. Chem. Mater. 31(6), 2121–2129 (2019)

    Google Scholar 

  73. R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit, H.-G. Boyen, M.F. Toney, M.D. McGehee, Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139(32), 11117–11124 (2017)

    Google Scholar 

  74. G. Kieslich, S. Sun, A.K. Cheetham, Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chem. Sci. 5(12), 4712–4715 (2014)

    Google Scholar 

  75. G. Kieslich, S. Sun, A.K. Cheetham, An extended tolerance factor approach for organic–inorganic perovskites. Chem. Sci. 6(6), 3430–3433 (2015)

    Google Scholar 

  76. T. Umebayashi, K. Asai, T. Kondo, A. Nakao, Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B 67(15), 155405 (2003)

    ADS  Google Scholar 

  77. D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G.F. Trindade, J.F. Watts, Z. Xu, Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360(6396), 1442–1446 (2018)

    ADS  Google Scholar 

  78. W. Geng, L. Zhang, Y.-N. Zhang, W.-M. Lau, L.-M. Liu, First-principles study of lead iodide perovskite tetragonal and orthorhombic phases for photovoltaics. J. Phys. Chem. C 118(34), 19565–19571 (2014)

    Google Scholar 

  79. C. Quarti, E. Mosconi, J.M. Ball, V. D’Innocenzo, C. Tao, S. Pathak, H.J. Snaith, A. Petrozza, F. De Angelis, Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells. Energy Environ. Sci. 9(1), 155–163 (2016)

    Google Scholar 

  80. F. Brivio, K.T. Butler, A. Walsh, M. Van Schilfgaarde, Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B 89(15), 155204 (2014)

    ADS  Google Scholar 

  81. V.N. Tuoc, T.D. Huan, Lead-free hybrid organic-inorganic perovskites for solar cell applications. J. Chem. Phys. 152(1), 014104 (2020)

    Google Scholar 

  82. P.-P. Sun, Q.-S. Li, L.-N. Yang, Z.-S. Li, Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb2+ with Ge2+. Nanoscale 8(3), 1503–1512 (2016)

    ADS  Google Scholar 

  83. X. Zhao, N.-G. Park, Stability issues on perovskite solar cells. Photonics 2(4), 1139–1151 (2015)

    Google Scholar 

  84. G. Nagabhushana, R. Shivaramaiah, A. Navrotsky, Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. Proc. Natl. Acad. Sci. 113(28), 7717–7721 (2016)

    Google Scholar 

  85. A. Ciccioli, A. Latini, Thermodynamics and the intrinsic stability of lead halide perovskites CH3NH3PbX3. J. Phys. Chem. Lett. 9(13), 3756–3765 (2018)

    Google Scholar 

  86. B. Brunetti, C. Cavallo, A. Ciccioli, G. Gigli, A. Latini, On the thermal and thermodynamic (in) stability of methylammonium lead halide perovskites. Sci. Rep. 6, 31896 (2016)

    ADS  Google Scholar 

  87. I. Ivanov, A. Steparuk, M. Bolyachkina, D. Tsvetkov, A. Safronov, A.Y. Zuev, Thermodynamics of formation of hybrid perovskite-type methylammonium lead halides. J. Chem. Thermodyn. 116, 253–258 (2018)

    Google Scholar 

  88. L. Gurvich, V. Yungman, G. Bergman, I. Veitz, A. Gusarov, V. Iorish, V.Y. Leonidov, V. Medvedev, G. Belov, N. Aristova, Thermodynamic Properties of Individual Substances. Ivtanthermo for Windows Database on Thermodynamic Properties of Individual Substances and Thermodynamic Modeling Software, 3rd edn. (Glushko Thermocenter of RAS, Moscow, 1992).

    Google Scholar 

  89. Y.N. Matyushin, T. Kon’kova, K. Titova, V.Y. Rosolovskii, Y.A. Lebedev, Enthalpy of formation of guanidinium nitrate, perchlorate, and chloride. Bull. Acad. Sci. USSR Div. Chem. Sci. 34(4), 713–716 (1985)

    Google Scholar 

  90. Y. Marcus, The guanidinium ion. J. Chem. Thermodyn. 48, 70–74 (2012)

    Google Scholar 

Download references

Acknowledgment

The authors thank the African Development Bank (AfDB) for funding this work.

Funding

The study was funded by the African Development Bank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Paschal.

Ethics declarations

Conflicts of interest

The authors declared that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3605 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paschal, C., Pogrebnoi, A. & Pogrebnaya, T. Guanidinium tin halide perovskites: structural, electronic, and thermodynamic properties by quantum chemical study. Appl. Phys. A 127, 355 (2021). https://doi.org/10.1007/s00339-021-04504-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04504-x

Keywords

Navigation