Skip to main content
Log in

Synthesis, characterization, magnetic and ion release properties of NH4MPO4.H2O (M = Mn2+, Fe2+, Co2+, Cu2+) prepared by a simple precipitation method in water solution

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, NH4MPO4.H2O (M = Mn2+, Fe2+, Co2+, Cu2+) microstructures were synthesized by a simple precipitation method at room temperature without any templates or surfactants. The materials were characterized by means of thermogravimetric analysis (TGA), differential scanning calorimetric method (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy (XPS). The characterization results show that the prepared samples have an orthorhombic structure for M = Mn2+, Fe2+, Co2+ samples without any impurity phase, whereas the monoclinic structure is presented in the NH4CuPO4.H2O sample. The morphology of all the obtained samples completely consists of a plate-like shape with the size of several micrometers. In addition, the microflower-like morphology with size about 10 µm was obtained when the metal was Mn. The oxidation state of P ions in all samples is 5 + which is consistent with the surface analysis using XPS. For the magnetic properties, the obtained materials show antiferromagnetic behavior with the highest magnetization value of 26.17 emu.g−1 at 10 kOe in the NH4MnPO4.H2O sample. By using inductively coupled plasma atomic emission spectroscopy (ICP-OES), the ion release properties of NH4MPO4.H2O (M = Mn2+, Fe2+, Co2+, Cu2+) microstructures show the potential application as slow-release fertilizer. This could be beneficial in order to reduce the amount of fertilizer used in plants and may be extended for the commercial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Li, P. Gu, Y. Feng, G. Zhang, K. Huang, H. Xue, H. Pang, Ultrathin Nickel-Cobalt Phosphate 2D Nanosheets for electrochemical energy storage under Aqueous/Solid-State Electrolyte. Adv. Funct. Mater. 27(12), 1605784 (2017)

    Article  Google Scholar 

  2. X. Guo, N. Li, Y. Cheng, G. Wang, Y. Zhang, H. Pang, General synthesis of nitrogen-doped metal (M = Co2+, Mn2+, Ni2+, or Cu2+) phosphates. Chem. Eng. J. 411, 128544 (2021)

    Article  Google Scholar 

  3. A. Yuan, J. Wu, L. Bai, S. Ma, Z. Huang, Z. Tong, Standard molar enthalpies of formation for ammonium/3d-transition metal phosphates NH4MPO4·H2O (M = Mn2+, Co2+, Ni2+, Cu2+). J. Chem. Eng. Data 53(5), 1066–1070 (2008)

    Article  Google Scholar 

  4. M. Debray, C. R. Acad. Sci. 59(4), 40 (1864)

    Google Scholar 

  5. A. Pujana, J. Luis Pizarro, L. Lezama, A. Goñi, M. Isabel Arriortua, T. Rojo, Synthesis, crystal structure, and magnetic properties of NH4CuPO4·H2O. J. Mater. Chem. 8(4), 1055–1060 (1998)

    Article  Google Scholar 

  6. S. Wang, H. Pang, S. Zhao, W. Shao, N. Zhang, J. Zhang, J. Chen, S. Li, NH4CoPO4·H2O microbundles consisting of one-dimensional layered microrods for high performance supercapacitors. RSC Adv. 4(1), 340–347 (2014)

    Article  ADS  Google Scholar 

  7. G.L. Bridger, M.L. Salutsky, R.W. Starostka, Micronutrient sources, metal ammonium phosphates as fertilizers. J. Agric. Food. Chem. 10(3), 181–188 (1962)

    Article  Google Scholar 

  8. V. Römheld, H. Marschner, Function of micronutrients in plants, in Micronutrients in Agriculture. ed. by J.J. Mortvedt (Soil Science Society of America, Madison, WI, USA, 1991), pp. 297–328

    Google Scholar 

  9. L.M. Lapina, Metal ammonium phosphates and their new applications. Russ. Chem. Rev. 37(9), 693 (1968)

    Article  ADS  Google Scholar 

  10. H. Wu, S. Liao, W. Wu, M. Liao, H. Cao, Synthesis and characterization of multi-micronutrient fertilizer ammonium cupric phosphate via solid state reaction. Chin. J. Chem. Eng. 58(5), 1215–1219 (2007)

    Google Scholar 

  11. V.G. Koleva, Metal-water interactions and hydrogen bonding in dittmarite-type compounds M’M’’PO4.H2O (M’=K+, NH4+; M’’=Mn2+, Co2+, Ni2+).Correlations of IR spectroscopic and structural data. Spectrochim. Acta A. 62(4–5), 1196–1202 (2005)

    Article  ADS  Google Scholar 

  12. A. Karaphun, P. Chirawatkul, S. Maensiri, E. Swatsitang, Influence of calcination temperature on the structural, morphological, optical, magnetic and electrochemical properties of Cu2P2O7 nanocrystals. J. Sol-Gel Sci. Technol. 88(2), 407–421 (2018)

    Article  Google Scholar 

  13. A. Karaphun, S. Maensiri, E. Swatsitang, Effect of calcination on structural, morphological, magnetic and electrochemical properties of mesoporous Ni2P2O7 microplates. J. Mater. Sci. Mater. Electron. 30(3), 3019–3031 (2019)

    Article  Google Scholar 

  14. H. Pang, Z. Yan, W. Wang, J. Chen, J. Zhang, H. Zheng, Facile fabrication of NH4CoPO4.H2O nano/microstructures and their primarily application as electrochemical supercapacitor. Nanoscale. 4(19), 5946–5953 (2012)

    Article  Google Scholar 

  15. X. Wang, Z. Yan, H. Pang, W. Wang, G. Li, Y. Ma, H. Zhang, X. Li, J. Chen, NH4CoPO4· H2O microflowers and porous Co2P2O7 microflowers: effective electrochemical supercapacitor behavior in different alkaline electrolytes. Int. J. Electrochem. Sci. 8, 3768–3785 (2013)

    Google Scholar 

  16. T. Yokoyama, H. Masuda, M. Suzuki, K. Ehara, K. Nogi, M. Fuji, T. Fukui, H. Suzuki, J. Tatami, K. Hayashi, K. Toda (2008) Basic Properties and Measuring Methods of Nanoparticles. In: Masuo, H., Kiyoshi, N., Mario, N., ToyokazU YokoyamaA2 - Masuo Hosokawa, K.N.M.N., Toyokaz, U.Y. (eds.) Nanoparticle Technology Handbook. (Elsevier, Amsterdam), pp. 3–48

  17. L. Wannasen, N. Chanlek, S. Maensiri, E. Swatsitang, Composition effect of Co/Ni on the morphology and electrochemical properties of NH4Co1-xNixPO4.H2O nanocrystallites prepared by a facile hydrothermal method. J. Mater. Sci. Mater. Electron. 30(8), 7794–7807 (2019)

    Article  Google Scholar 

  18. Z. Huang, Z. Wang, X. Zheng, H. Guo, X. Li, Q. Jing, Z. Yang, Structural and electrochemical properties of Mg-doped nickel based cathode materials LiNi0.6Co0.2Mn0.2−xMgxO2 for lithium ion batteries. RSC Adv. 5(108), 88773–88779 (2015)

    Article  ADS  Google Scholar 

  19. B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12(4), 537–541 (2005)

    Article  Google Scholar 

  20. C.-C. Xu, Y. Wang, L. Li, Y.-J. Wang, L.-F. Jiao, H.-T. Yuan, Hydrothermal synthesis mechanism and electrochemical performance of LiMn0.6Fe0.4PO4 cathode material. Rare Metals 38(1), 29–34 (2019)

    Article  Google Scholar 

  21. N.V. Kosova, E.T. Devyatkina, V.V. Kaichev, Mixed layered Ni–Mn–Co hydroxides: crystal structure, electronic state of ions, and thermal decomposition. J. Power Sources 174(2), 735–740 (2007)

    Article  ADS  Google Scholar 

  22. P. Xu, J. Liu, T. Liu, K. Ye, K. Cheng, J. Yin, D. Cao, G. Wang, Q. Li, Preparation of binder-free CuO/Cu2O/Cu composites: a novel electrode material for supercapacitor applications. RSC Adv. 6(34), 28270–28278 (2016)

    Article  ADS  Google Scholar 

  23. E. Swatsitang, A. Karaphun, S. Phokha, S. Hunpratub, T. Putjuso, Magnetic and optical properties of Cu1−xFexO nanosheets prepared by the hydrothermal method. J. Sol-Gel Sci. Technol. 83(2), 382–393 (2017)

    Article  Google Scholar 

  24. A. Gaur, B.D. Shrivastava, S.K. Joshi, Copper K-edge XANES of Cu(I) and Cu(II) oxide mixtures. J. Phys. Conf. Ser. 190, 012084 (2009)

    Article  Google Scholar 

  25. W.E. Morgan, J.R. Van Wazer, W.J. Stec, Inner-orbital photoelectron spectroscopy of the alkali metal halides, perchlorates, phosphates, and pyrophosphates. J. Am. Chem. Soc. 95(3), 751–755 (1973)

    Article  Google Scholar 

  26. Q.-Z. Ou, Y. Tang, Y.-J. Zhong, X.-D. Guo, B.-H. Zhong, L. Heng, M.-Z. Chen, Submicrometer porous Li3V2(PO4)3/C composites with high rate electrochemical performance prepared by sol-gel combustion method. Electrochim. Acta 137, 489–496 (2014)

    Article  Google Scholar 

  27. I. Bica, Nanoparticle production by plasma. Mater. Sci. Eng. B 68(1), 5–9 (1999)

    Article  Google Scholar 

  28. M.A. López-Quintela, J. Rivas, Chemical reactions in microemulsions: a powerful method to obtain ultrafine particles. J. Colloid Interface Sci. 158(2), 446–451 (1993)

    Article  ADS  Google Scholar 

  29. L. Rezlescu, E. Rezlescu, P.D. Popa, N. Rezlescu, Fine barium hexaferrite powder prepared by the crystallisation of glass. J. Magn. Magn. Mater. 193(1–3), 288–290 (1999)

    Article  ADS  Google Scholar 

  30. H.-J. Koo, M.-H. Whangbo, On the correct spin lattice for the spin-gapped magnetic solid NH4CuPO4·H2O. J. Solid State Chem. 181(2), 276–281 (2008)

    Article  ADS  Google Scholar 

  31. M. Touaiher, M. Bettach, K. Benkhouja, M. Zahir, M.A.G. Aranda, S. Bruque, Synthesis and structure of NH4CoPO46H2O. Ann. Chim. - Sci. Mat. 26(3), 49–54 (2001)

    Article  Google Scholar 

  32. M.E. Trenkel, Slow- and Controlled-release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture. International fertilizer industry Association, (2010)

  33. V. Römheld, H. Marschner, Function of micronutrients in plants, in Micronutrients in agriculture. ed. by J.J. Mortvedt (Soil Science Society of America, Madison, WI, USA, 1991), pp. 297–328

    Google Scholar 

  34. P. Li, Y. Du, L. Li, L. Huang, V. Rudolph, A.V. Nguyen, Z.P. Xu, Preparation and characterisation of manganese and iron compounds as potential control-release foliar fertilisers. Biointerface Res. Appl. Chem. 4(3), 746–753 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Suranaree University of Technology (SUT) and the SUT-NANOTEC RNN on Nanomaterials and Advanced Characterizations and the SUT Center of Excellence on Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima, Thailand, for providing XRD, TEM facilities, and financial support. S. Phumying is supported by SUT-PhD Fund. The authors would like to thank Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand, for XANES and XPS facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santi Maensiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phumying, S., Sichumsaeng, T., Sonsupap, S. et al. Synthesis, characterization, magnetic and ion release properties of NH4MPO4.H2O (M = Mn2+, Fe2+, Co2+, Cu2+) prepared by a simple precipitation method in water solution. Appl. Phys. A 127, 352 (2021). https://doi.org/10.1007/s00339-021-04492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04492-y

Keywords

Navigation