Skip to main content

Influence of Ga-doped transparent conducting ZnO thin film for efficiency enhancement in organic light-emitting diode applications

Abstract

In this paper, transparent conducting n-type ZnO:Ga and commercially available SnO\(_2\):F (U-type Asahi) thin films have been used as a front electrode (Anode) in organic light-emitting diode (OLED)-based display devices. RF magnetron sputtered ZnO:Ga thin films with an electrical resistivity of 9.6\(\times \)10\( ^{-5} \) \(\varOmega -cm\), low sheet resistance less than 5.6\(\varOmega \)/\(\square \) and optical transparency greater than 90% have been reported at room temperature (RT) using the glass substrate. The OLED device structure consists of transparent conducting oxide (TCO) (170 nm)/HAT-CN (15 nm)/TAPC (30 nm)/CBP:Ir(ppy)\( _{3} \)(30nm; 8wt%)/BPhen(50 nm)/LiF (1 nm)/Al (120 nm). Normalized intensity of both types TCO (ZnO:Ga and SnO\(_2\):F)-based OLED shows a similar kind of result. The results suggest that Ga-doped ZnO thin films are the substitutional anode materials of commercially established SnO\(_2\):F (fluorine-doped tin oxide), ITO (tin-doped indium oxide) for the OLED application, and also in other optoelectronic devices. The important figures of merit such as external quantum efficiency, current and power efficiency of ZnO:Ga (GZO)-based OLED are demonstrated and compared with SnO\(_2\):F (FTO)-based OLED. These results suggest that Ga-doped ZnO thin films can be a promising candidate as the anode layer in OLEDs as a substitution to ITO and SnO\(_2\):F film.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Y. Chen, J. Wang, Z. Zhong, Z. Jiang, C. Song, Z. Hu, J. Peng, J. Wang, Y. Cao, Organic Electronics 37, 458 (2016)

    Article  Google Scholar 

  2. S. Lee, B. Kim, H. Jung, H. Shin, H. Lee, J. Lee, J. Park, Dyes and Pigment 136, 255 (2017)

    Article  Google Scholar 

  3. Y.H. Lee, D.H. Kim, K.H. Yoo, T.W. Kim, Applied Physics Letter 105, 183303 (2014)

    ADS  Article  Google Scholar 

  4. M. Gedda, D. Das, P.K. Iyer, G. Kulkarni, Materials Research Express 7, 054005 (2020)

    ADS  Article  Google Scholar 

  5. Z. Liu, M.G. Halender, Z. Wang, Z. Lu, Organic Electronics 14, 852 (2013)

    Article  Google Scholar 

  6. J.H. Seo, S.J. Lee, B.Y. Kim, E.Y. Choi, K. Han, K.H. Lee, S.S. Yoon, Y.K. Kim, Journal Nanoscience Nanotechnology 12, 4190 (2012)

    Article  Google Scholar 

  7. L. Zuo, G. Han, R. Sheng, K. Xue, Y. Duan, P. Chen, Y. Zhao, RCS Advance. 6, 55017 (2016)

    ADS  Google Scholar 

  8. H. Zhang, J. Ouyang, Applied Physics Letter 97, 063509 (2010)

    ADS  Article  Google Scholar 

  9. B.Y. Yang, Q. Huang, A.W. Metz, J. Ni, S. Jin, T.J. Marks, M.E. Madsen, A. Divenere, S.T. Ho, Advance Material 16, 4 (2004)

    Google Scholar 

  10. H. Liu, Y.F. Liu, P.P. Xiong, P. Chen, H.Y. Li, J.W. Hou, B.N. Kang, Y. Duan, IEEE Transactions on Nanotechnology 16, 4 (2017)

    Article  Google Scholar 

  11. A.C. Arias, L.S. Roman, T. Kugler, R. Toniolo, M.S. Meruvia, I.A. Hummelgen, Thin Solid Films 371, 201 (2000)

    ADS  Article  Google Scholar 

  12. A. Anderson, N. Johansson, P. Broms, Nu Yu, D. Lupo, W..R. Salaneck, Advance Material 10, 859 (1998)

    Article  Google Scholar 

  13. A.C. Arias, J.R. de Lima, I.A. Hummelgen, Advance Material 10, 392 (1998)

    Article  Google Scholar 

  14. J. Ouerfelli, S. Ouro Djobo, J..C. Bernede, L. Cattin, M. Morsli, Y. Berredjem, Materials Chemistry and Physics 112, 198 (2008)

    Article  Google Scholar 

  15. M. Batzill, K. Katsiev, U. Diebold, Applied Physics Letter 85, 5766 (2004)

    ADS  Article  Google Scholar 

  16. M. Batzill, K. Katsiev, U. Diebold, Physical Chemistry Chemical Physics 79, 47 (2005)

    Google Scholar 

  17. C..Y. ark, J..H. Lee, B..H. Choi, Organic Electronics 14(12), 3172 (2013)

    Article  Google Scholar 

  18. W.S. Leung, Y.C. Chan, S.M. Lui, Microelectronic Engineering 101, 1 (2013)

    Article  Google Scholar 

  19. Y..N. Kim, H..G. Shin, J..K. Song, D..H. Cho, Journal of Materials Research 20(6), 1574 (2005)

    ADS  Article  Google Scholar 

  20. Y.J. Choi, S.C. Gong, C.S. Park, H.S. Lee, J.G. Jang, H.J. Chang, G.Y. Yeom, H.H. Park, Applied Material Interfaces 5, 3650 (2013)

    Article  Google Scholar 

  21. J.S. Hong, K.W. Jang, Y.S. Park, H.W. Choi, K.H. Kim, Molecular Crystals and Liquid Crystals 538, 103 (2011)

    Article  Google Scholar 

  22. P..K. Nayak, J. Yang, J. Kim, S. Chung, J. Jeong, C. Lee Yongtaek, Journal of Physics D: Applied Physics 42, 139801 (2009)

    ADS  Article  Google Scholar 

  23. S..H. Jeong, B..N. Park, D..G. Yoo, J..H. Boo, D. Jung, Journal of the Korean Physical Society 50(3), 622 (2007)

    ADS  Article  Google Scholar 

  24. R.N. Chauhan, N. Tiwari, R.S. Anand, J. Kumar, RSC Advance 6, 86770 (2016)

    ADS  Article  Google Scholar 

  25. Z.L. Tseng, P.C. Kao, Y.C. Chen, Y.D. Juang, Y.M. Kuo, S.Y. Chua, Journal of The Electrochemical Society 158(10), J310 (2011)

    Article  Google Scholar 

  26. D. Xu, Z. Deng, Y. Xu, J. Xiao, C. Liang, Z. Pei, C. Sun, Physics Letter A 346, 148 (2005)

    ADS  Article  Google Scholar 

  27. D.G. Yoo, S.H. Nam, M.H. Kim, S.H. Jeong, H.G. Jee, H.J. Lee, N.E. Lee, B.Y. Hong, Y.J. Kim, D. Jung, J.H. Boo, Surface & Coatings Technology 202, 5476 (2008)

    Article  Google Scholar 

  28. Y.R. Park, E. Nam, J.H. Boo, D. Jung, S.J. Suh, Y.S. Kim, Bulletin of the Korean Chemical Society 28, 12 (2007)

    Google Scholar 

  29. R. Das, H..S. Das, Journal of The Institution of Engineers (India): Series D 98(1), 85 (2017)

    ADS  Article  Google Scholar 

  30. R. Das, H..S. Das, P..K. Nandi, S. Biring, Applied Physics A 124, 631 (2018)

    Article  Google Scholar 

  31. V. Assuncão, E. Fortunato, A. Marques, H. Águas, I. Ferreira, M.E.V. Costa, R. Martins, Thin solid films 427, 401 (2003)

    ADS  Article  Google Scholar 

  32. J.H. Jou, S. Kumar, A. Agrawal, T.H. Li, S. Sahoo, Journal of Materials Chemistry C 3, 2974 (2015)

    Article  Google Scholar 

  33. J. S. Hong, K. W. Jang,Y. S. Park, H. W. Choi & K. H. Kim, Molecular Crystal Liquid Crystal 538: 1,103(2011)

  34. J.J. Berry, D.S. Ginley, P.E. Burrows, Applied Physics Letter 92, 193304 (2008)

    ADS  Article  Google Scholar 

  35. S. H. Park, J. Ik Lee, C. S. Hwang and H. Y. Chu, The Japan Society of Applied Physics, 44, 7, L242(2005)

  36. Y.D. Ko, K.C. Kim, Y.S. Kim, Superlattices and Microstructures 51(6), 933 (2012)

    ADS  Article  Google Scholar 

  37. E. Nam, Y.H. Kang, D. Jung, Y.S. Kim, Thin Solid Films 518(22), 6245 (2010)

    ADS  Article  Google Scholar 

  38. R. Das, H. S. Das, Journal of The Institution of Engineers (India): Series D, 98(2),203(2017)

  39. G. Haacke, Applied Physics Letter 28(10), 622 (1976)

    ADS  Article  Google Scholar 

  40. J. R. Báez, A. Maldonado, G. T. Delgado, R. C. Pérez, M. L. Olvera, Material of Letter 60,13-14,1594(2006)

  41. Y.H. Tak, K.B. Kim, H.G. Park, K.H. Lee, J.R. Lee, Thin Solid Films 411, 12 (2002)

    ADS  Article  Google Scholar 

  42. B. Zhang, X. Dong, X. Xu, X. Wang, J. Wu, Material Science in Semiconductor Processing,10,6,264(2007)

  43. J. S. Hong, S. M. Kim,S. J. Park,H. w. Choi, K. H. kim, Molecular Crystals and Liquid Crystals. 520, 295(2010)

Download references

Acknowledgements

Rajesh Das and Himadri Sekhar Das acknowledge the Department of Science and Technology, Govt. of India [DST/TM/SERI/2K10/67(G)], for financial support for pursuing the R&D activity. Sajal Biring acknowledges the financial support from Ministry of Science and Technology, Taiwan (MOST-109-2221-E-131-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himadri Sekhar Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, H.S., Das, R., Nandi, P.K. et al. Influence of Ga-doped transparent conducting ZnO thin film for efficiency enhancement in organic light-emitting diode applications. Appl. Phys. A 127, 225 (2021). https://doi.org/10.1007/s00339-021-04339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04339-6

Keywords

  • Thin film
  • Photoluminescence
  • Optoelectronics device
  • AFM
  • OLED performance