Modulation of morphological, optical and magnetic properties of Cr-doped La0.9Ce0.1FeO3 nanoferrites synthesized by surface-active ionic liquid aided hydrothermal route

Abstract

The impact of doping of Cr ion on structural, magnetic and optical properties of La0.9Ce0.1Fe1-xCrxO3 nanoferrites synthesized by surface-active ionic liquid (SAIL) aided hydrothermal route has been investigated. The presence of different oxidation state of Cr leads to appearance of secondary phases in Cr-doped La0.9Ce0.1Fe1-xCrxO3 samples as indicated by results obtained from XRD, FT-IR and Raman spectroscopy. Mӧssbauer spectroscopy and magnetic studies also revealed structural distortion and formation of mixed phases in Cr-doped samples. The random occupancy by Cr at Fe-site leads to decrease in magnetization. The use of SAILs for preparation of nanoferrites helped to achieve directional growth of nanoparticles as suggested by transmission electron microscopy (TEM). It is anticipated that present study would help to understand the role of Cr ion in modulating various physico-chemical properties of La0.9Ce0.1FeO3.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    A. Manthiram, J.H. Kim, Y.N. Kim, K.T. Lee, Crystal chemistry and properties of mixed ionic-electronic conductors. J. Electroceram. 27, 93 (2011)

    Google Scholar 

  2. 2.

    A.M. Ritzmann, A.B. Munoz-Garcia, J.A. Keith, E.A. Carter, Ab initio evaluation of oxygen diffusivity in LaFeO3: the role of lanthanum vacancies. MRS Commun. 3, 161 (2013)

    Google Scholar 

  3. 3.

    A. Delmastro, D. Mazza, S. Ronchetti, M. Vallino, R. Spinicci, P. Brovetto, M. Salis, Synthesis and characterization of non-stoichiometric LaFeO3 perovskite. Mater. Sci. Eng. B 79, 140 (2001)

    Google Scholar 

  4. 4.

    Y.-G. Cho, K.H. Choi, Y.-R. Kim, J.-S. Jung, S.H. Lee, Bull, , Characterization and catalytic properties of surface La-rich LaFeO3 Perovskite. Korean Chem. Soc. 30(6), 1368–1372 (2009)

    Google Scholar 

  5. 5.

    R. Andoulsin, K.H. Naifer, M. Fe´rid, , Electrical conductivity of La1−xCaxFeO3−δ solid solutions. Ceram. Int. 39(6), 6527–6531 (2013)

    Google Scholar 

  6. 6.

    L.G. Tejuca, J.L.G. Fierro, Properties and Applications of Perovskite-Type Oxides Chemical Industries (CRC Press, Madrid, 1993).

    Google Scholar 

  7. 7.

    L. Qiao, H.Y. Xiao, S.M. Heald, M.E. Bowden, T. Varga, G.J. Exarhos, M.D. Biegalski, I.N. Ivanov, W.J. Weber, T.C. Droubay, S.A. Chambers, J. Mater. Chem. C. 1, 4527–4535 (2013)

    Google Scholar 

  8. 8.

    R. Polini, A. Pamio, E. Traversa. J. Eur. Ceram. Soc. 24, 1365–1370 (2004)

    Google Scholar 

  9. 9.

    C.F. Gainer, M. Romanowsk, J Innov Opt Health Sci 7, 1330007 (2014)

    Google Scholar 

  10. 10.

    N. Afifah, R. Saleh, J. Phys. Conf. Ser. 701, 012030 (2016)

    Google Scholar 

  11. 11.

    X. Liu, X. Duan, Q. Qin, Q. Wang, W. Zheng, Cryst Eng Comm. 15, 3284–3287 (2013)

    Google Scholar 

  12. 12.

    A.Z. Hezave, S.D.S. Ayatollahi, M. Nabipour, B. Hemmateenejad, Colloids Surf. A 421, 63–71 (2013)

    Google Scholar 

  13. 13.

    Z. He, P. Alexandridis, Phys. Chem. Chem. Phys. 17, 18238 (2015)

    Google Scholar 

  14. 14.

    Good enough JB, , Theory of the role of covalence in the perovskite-type manganites La M(II)MnO3. Phys. Rev. 100, 564–573 (1955)

    ADS  Google Scholar 

  15. 15.

    J. Kanamori, J. Phys. Chem. Solids 10, 87–98 (1959)

    ADS  Google Scholar 

  16. 16.

    A. Belayachi, E. Loudghuu, M.E. Yamani, M. Nogues, J.L. Dormann, M. Taibi, Ann. Chim. Sci. Mat. 23, 297–300 (1998)

    Google Scholar 

  17. 17.

    A.K. Azad, A. Mellerga, S.-G. Eriksson, S.A. Ivanov, S.M. Yunus, F. Lindberg, G. Svensson, R. Mathieu, Mater. Res. Bull. 40, 1633–1644 (2005)

    Google Scholar 

  18. 18.

    F.A. Fabian, P.P. Pedra, J.L.S. Filho, J.G.S. Duque, C.T. Meneses, J. Magn. Magn. Mater. 379, 80–83 (2015)

    ADS  Google Scholar 

  19. 19.

    W. Hu, Y. Chen, H. Yuan, G. Zhang, G. Li, G. Pang, S. Feng, J. Solid State Chem. 183, 1582–1587 (2010)

    ADS  Google Scholar 

  20. 20.

    A.P. Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, I.P. Muthuselvam, F.C. Chou, J. Alloys and Compounds. 646, 924–931 (2015)

    Google Scholar 

  21. 21.

    M.V. Kuznetsov, Q.A. Pankhurst, I.P. Parkinc, Y.G. Morozov, J. Mater. Chem. 11, 854–858 (2001)

    Google Scholar 

  22. 22.

    T. Aril, A. Kishi, M. Ogawa, Y. Sawada, Anal. Sci. 17, 875–880 (2001)

    Google Scholar 

  23. 23.

    H.M. Kamari, N.M. Al-Hada, A.A. Baqer, A.H. Shaari, E. Saion, J. Mater. Sci. Mater. 30(8), 8035–8046 (2019)

    Google Scholar 

  24. 24.

    P. Melnikov, V.A. Nascimento, I.V. Arkhangelsky, L.Z. Zanoni Consolo, L.C.S. de Oliveira, J Therm Anal Calorim. 115, 145–151 (2014)

    Google Scholar 

  25. 25.

    K.N. Woods, T.-H. Chiang, P.N. Plassmeyer, M.G. Kast, A.C. Lygo, A.K. Grealish, S.W. Boettcher, C.J. Page, A.C.S. Appl, Mater. Interfaces 9, 10897–10903 (2017)

    Google Scholar 

  26. 26.

    P.S. Shikha, T.S. Kang, B.S. Randhawa, RSC Adv. 5, 96799–96808 (2015)

    ADS  Google Scholar 

  27. 27.

    Y. Janbutrach, S. Hunpratub, E. Swatsitang, Nanoscale Res. Lett. 9, 498 (2014)

    ADS  Google Scholar 

  28. 28.

    S. Pattanayak, R.N.P. Choudhary, P.R. Das, Electron. Mater. Lett. 10, 165–172 (2014)

    Google Scholar 

  29. 29.

    S.S. Arafat, S. Ibrahim, Mater Sci Appl 8, 716–725 (2017)

    Google Scholar 

  30. 30.

    X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, Mater. Chem. Phys. 78, 25 (2002)

    Google Scholar 

  31. 31.

    H. Cui, M. Zayat, D. Levy, J. Non-Cryst, Solids. 352, 3035–3040 (2006)

    Google Scholar 

  32. 32.

    J. Feng, T. Liu, Y. Xu, J. Zhao, Y. He, Ceram Int. 37, 1203–1207 (2011)

    Google Scholar 

  33. 33.

    C. Jagadeeshwaran, A. P. Blessington, Selvadurai, V. Pazhanivelu and R. Murugaraj, (2013) International Journal of Innovative Research in Science and Engineering ISSN (Online), 2347–3207.

  34. 34.

    R.S. Das, Y.K. Agrawal, Vib. Spectrosc 57, 163–176 (2011)

    Google Scholar 

  35. 35.

    M. Popa, J. Frantti, M. Kakihana, Solid State Ion. 154, 437–445 (2002)

    Google Scholar 

  36. 36.

    K. Li, D. Wang, F. Wu, T. Xie, T. Li, Mater. Chem. Phys. 64, 269–272 (2000)

    Google Scholar 

  37. 37.

    P.S. Shikha Komal, T.S. Kang, B.S. Randhawa, J. Alloys Compd 701, 788–796 (2017)

    Google Scholar 

  38. 38.

    P.S. Shikha, T.S. Kang, B.S. Randhawa, J. Alloy. Compd. 625, 336–345 (2015)

    Google Scholar 

  39. 39.

    X. Li, X. Cui, X. Liu, M. Jin, L. Xiao, M. Zhao, Hyperfine Interact. 69, 851 (1992)

    ADS  Google Scholar 

  40. 40.

    B.C. Luo, C.L. Chen, Z. Xu, Q. Xi, Phys. Lett. A. 374, 4265–4268 (2010)

    ADS  Google Scholar 

  41. 41.

    J. Kanamori, J. Phys. Chem. Solids. 10, 87–98 (1959)

    ADS  Google Scholar 

  42. 42.

    P. Baettig, N. Spaldin, Appl. Phys. Lett. 86(1), 012505 (2005)

    ADS  Google Scholar 

  43. 43.

    A.P. Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, I.P. Muthuselvam, F.C. Chou, J. Alloys Compd. 646, 924–931 (2015)

    Google Scholar 

  44. 44.

    M.E. Castrej, M.G. Guaderrama, L. Fuentes, J.P. Gonjal, A.M. Gonzalez, M.A. de la Rubia, R.M. García-Hernandez, E. Moran, Inorg. Chem. 50, 8340–8347 (2011)

    Google Scholar 

  45. 45.

    L. Yuan, K. Huang, C. Hou, W. Feng, S. Wang, C. Zhou, S. Feng, New J. Chem. 38, 1168–1172 (2014)

    Google Scholar 

Download references

Acknowledgement

Komal is thankful to UGC Government of India for the award of SRF. The authors are highly thankful to Council of Scientific and Industrial Research (CSIR), New Delhi for financial assistance provided vide project number (01/2548/11-EMR-II).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tejwant Singh Kang.

Ethics declarations

Conflict of interest:

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arora, K., Shikha, P., Abdelbaky, R.M.K. et al. Modulation of morphological, optical and magnetic properties of Cr-doped La0.9Ce0.1FeO3 nanoferrites synthesized by surface-active ionic liquid aided hydrothermal route. Appl. Phys. A 127, 141 (2021). https://doi.org/10.1007/s00339-021-04294-2

Download citation

Keywords

  • Doped nanomaterials
  • Oxidation state
  • Hydrothermal route
  • Mӧssbauer spectroscopy