Skip to main content
Log in

Structure, magnetic properties, and exchange-coupling effect of Co0.6Mg0.15NdxFe2.25–xO4/Co

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hard/soft Co0.6Mg0.15NdxFe2.25–xO4/Co composites have been synthesized by reducing Co0.6Mg0.15NdxFe2.25–xO4 (CMNFO) at 550 °C in 5% H2–Ar atmosphere. The results of X-ray diffraction measurements confirm that CMNFO samples, calcined at 900 °C, consist of the main cubic MgFe2O4 phase in combination of trace amounts of Fe2O3 and FeNdO3 phases. The surface particles in the CMNFO are transformed into soft magnetic Co phase, and Fe2O3 phase disappears after being reduced at 550 °C for 30 min. The magnetic measurement shows that specific saturation magnetization of the CMNFO decreases with the increase in Nd3+ content. By contrast, specific saturation magnetization and coercivity of CMNFO/Co composites obviously increase. Co0.6Mg0.15Nd0.04Fe2.21O4/Co composite exhibits a maximum specific saturation magnetization value (73.56 emu/g) at a reduction time of 20 min. Co0.6Mg0.15Nd0.04Fe2.21O4/Co composite still behaves a single-phase hysteresis loop, attributed to coherent magnetization rotation and strong exchange-coupling between hard magnetic CMNFO and soft magnetic Co particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.L. Liang, Z.L. Li, K. Ma, X.H. Wu, W.W. Wu, J.Y. Xia, Y.F. Huang, Y.Z. Huang, Improved magnetic properties of Co0.5LaxFe2.5–xO4/FeCo composite powders by magnetic exchange–coupling effect. J. Magn. Magn. Mater. 491, 165596 (2019)

    Google Scholar 

  2. J. Venturini, A.M. Tonelli, T.B. Wermuth, R.Y.S. Zampiva, S. Arcaro, A.D.C. Viegas, C.P. Bergmann, Excess of cations in the sol–gel synthesis of cobalt ferrite (CoFe2O4): a pathway to switching the inversion degree of spinels. J. Magn. Magn. Mater. 482, 1 (2019)

    ADS  Google Scholar 

  3. A. Persis Amaliya, S. Anand, S. Pauline, Investigation on structural, electrical and magnetic properties of titanium substituted cobalt ferrite nanocrystallites. J. Magn. Magn. Mater. 467, 14–28 (2018)

    ADS  Google Scholar 

  4. M.A. Almessiere, Y. Slimani, S. Güner, M. Nawaz, A. Baykal, F. Aldakheel, S. Akhtar, I. Ercan, İ. Belenli, B. Ozcelik, Magnetic and structural characterization of Nb3+-substituted CoFe2O4 nanoparticles. Ceram. Int. 45, 8222–8232 (2019)

    Google Scholar 

  5. K.W. Zhou, W. Chen, X.H. Wu, W.W. Wu, C.W. Lin, J. Wu, Improvement of the Coercivity of Cobalt Ferrites Induced by Substitution of Sr2+ Ions for Co2+ Ions. J. Electron. Mater. 46(7), 4618–4626 (2017)

    ADS  Google Scholar 

  6. S. Joshi, M. Kumar, Effect of Ni2+ substitution on structural, magnetic, dielectric and optical properties of mixed spinel CoFe2O4 nanoparticles. Ceram. Int. 42(16), 18154–18165 (2016)

    Google Scholar 

  7. E.E. Ateia, M.K. Abdelmaksoud, M.M. Arman, A.S. Shafaay, Comparative study on the physical properties of rare-earth-substituted nano-sized CoFe2O4. Appl. Phys. A. 126, 91 (2020)

    ADS  Google Scholar 

  8. A. Gaffoor, K.C.B. Naidu, D. Ravinder, K.M. Batoo, S.F. Adil, M. Khan, Synthesis of nano-NiXFe2O4 (X = Mg/Co) by citrate-gel method: structural, morphological and low-temperature magnetic properties. Appl. Phys. A. 126, 39 (2020)

    ADS  Google Scholar 

  9. M.B. Mohamed, Effect of Er-doping on structural, magnetic and dielectric properties of nano CoFe2O4. Appl. Phys. A. 125, 756 (2019)

    ADS  Google Scholar 

  10. T. Prabhakaran, R.V. Mangalaraja, J.C. Denardin, J.A. Jiménez, The effect of calcination temperature on the structural and magnetic properties of co-precipitated CoFe2O4 nanoparticles. J. Alloys Compd. 716, 171–183 (2017)

    Google Scholar 

  11. D.W. Hu, F. Zhao, Z. Zhang, L. Miao, R. Ma, W.X. Zhao, L.J. Ren, G.N. Zhang, L. Zhai, D.M. Wang, S.M. Dou, Ceram. Int. 44(18), 22462–22466 (2018)

    Google Scholar 

  12. Y. Kumar, A. Sharma, P.M. Shirage, Impact of different morphologies of CoFe2O4 nanoparticles for tuning of structural, optical and magnetic properties. J. Alloys Compd. 778, 398–409 (2019)

    Google Scholar 

  13. J. Venturini, T.B. Wermuth, M.C. Machado, S. Arcaro, A.K. Alves, A. da Cas Viegas, C.P. Bergmann, The influence of solvent composition in the sol–gel synthesis of cobalt ferrite (CoFe2O4): a route to tuning its magnetic and mechanical properties. J. Eur. Ceram. Soc. 39(12), 3442–3449 (2019)

    Google Scholar 

  14. B.G. Toksha, S.E. Shirsath, M.L. Mane, K.M. Jadhav, Auto-ignition synthesis of CoFe2O4 with Al3+ substitution for high frequency applications. Ceram. Int. 43(16), 14347–14353 (2017)

    Google Scholar 

  15. W. Chen, W.W. Wu, X.H. Wu, T.W. Li, J. Wu, H.X. Zhang, Controlled growth of large-area arrays of Al-substituted CoNiZn ferrite rods with high saturation magnetization by solvothermal method. J. Mater. Sci. Mater Electron. 28, 7874–7883 (2017)

    Google Scholar 

  16. A. Omelyanchik, G. Singh, M. Volochaev, A. Sokolov, V. Rodionova, D. Peddis, Tunable magnetic properties of Ni-doped CoFe2O4 nanoparticles prepared by the sol–gel citrate self-combustion method. J. Magn. Magn. Mater. 476, 387–391 (2019)

    ADS  Google Scholar 

  17. L.Q. Qin, M.L. Gao, W.W. Wu, S.Q. Ou, K.T. Wang, B. Liu, X.H. Wu, Co1−xMgxFe2O4 magnetic particles: preparation and kinetics research of thermal transformation of the precursor. Ceram. Int. 40(7), 10857–10866 (2014)

    Google Scholar 

  18. R.S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajdúchová, V. Enev, I. Kuřitka, Z. Kožáková, Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J. Magn. Magn. Mater. 399, 109–117 (2016)

    ADS  Google Scholar 

  19. A. Zubair, Z. Ahmad, A. Mahmood, W.C. Cheong, I. Ali, M.A. Khan, A.H. Chughtai, M.N. Ashiq, Structural, morphological and magnetic properties of Eu-doped CoFe2O4 nano-ferrites. Results Phys. 7, 3203–3208 (2017)

    ADS  Google Scholar 

  20. T. Shang, Q.S. Lu, L.M. Chao, Y.L. Qin, Y.H. Yun, G.H. Yun, Effects of ordered mesoporous structure and La-doping on the microwave absorbing properties of CoFe2O4. Appl. Surf. Sci. 434, 234–242 (2018)

    ADS  Google Scholar 

  21. M.M. Rashad, R.M. Mohamed, H. El-Shall, Magnetic properties of nanocrystalline Sm-substituted CoFe2O4 synthesized by citrate precursor method. J. Mater. Process. Tech. 198(1–3), 139–146 (2008)

    Google Scholar 

  22. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, L. Kalina, P. Urbánek, M. Machovsky, D. Skoda, M. Masař, M. Holek, Sonochemical synthesis of Gd3+ doped CoFe2O4 spinel ferrite nanoparticles and its physical properties. Ultrason. Sonochem. 40, 773–783 (2018)

    Google Scholar 

  23. M.A. Almessiere, Y. Slimani, M. Sertkol, F.A. Khan, M. Nawaz, H. Tombuloglu, E.A. Al-Suhaimi, A. Baykal, Ce–Nd Co-substituted nanospinel cobalt ferrites: An investigation of their structural, magnetic, optical, and apoptotic properties. Ceram. Int. 45(13), 16147–16156 (2019)

    Google Scholar 

  24. M.A. Almessiere, A. Demir Korkmaz, Y. Slimani, M. Nawaz, S. Alie, A. Bayka, Magneto-optical properties of rare earth metals substituted Co–Zn spinel nanoferrites. Ceram. Int. 45(3), 3449–3458 (2019)

    Google Scholar 

  25. K. Elayakumar, A. Dinesh, A. Manikandan, M. Palanivelu, G. Kavitha, S. Prakash, R. Thilak Kumar, S.K. Jaganathan, A. Baykal, Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 476, 157–165 (2019)

    ADS  Google Scholar 

  26. M. Hashim, M. Raghasudha, S.S. Meena, J. Shah, S.E. Shirsath, S. Kumar, D. Ravinder, P. Bhatt, A. Alimuddin, R. Kumar, R.K. Kotnala, Influence of rare earth ion doping (Ce and Dy) on electrical and magnetic properties of cobalt ferrites. J. Magn. Magn. Mater. 449(319), 327 (2018)

    ADS  Google Scholar 

  27. S.I. Ahmad, S.A. Ansari, D. Ravi Kumar, Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite. Mater. Chem. Phys. 208, 248–257 (2018)

    Google Scholar 

  28. M. Kaur, P. Jain, M. Singh, Studies on structural and magnetic properties of ternary cobalt magnesium zinc (CMZ) Co0.6–xMgxZn0.4 Fe2O4 (x = 0.0, 0.2, 0.4, 0.6) ferrite nanoparticles. Mater. Chem. Phys. 162, 332–339 (2015)

    Google Scholar 

  29. I.C. Nlebedim, R.L. Hadimani, R. Prozorov, D.C. Jiles, Structural, magnetic, and magnetoelastic properties of magnesium substituted cobalt ferrite. J. Appl. Phys. 113(17), 928 (2013)

    Google Scholar 

  30. R. Sharma, P. Thakur, M. Kumar, N. Thakur, N.S. Negi, P. Sharma, V. Sharma, Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloys Compd. 684, 569–581 (2016)

    Google Scholar 

  31. N. Thomas, P.V. Jithin, V.D. Sudheesh, V. Sebastian, Magnetic and dielectric properties of magnesium substituted cobalt ferrite samples synthesized via one step calcination free solution combustion method. Ceram. Int. 43(9), 7305–7310 (2017)

    Google Scholar 

  32. W. Chen, C.Y. Xiao, C. Huang, X.H. Wu, W.W. Wu, Q.S. Wang, J.T. Li, K.W. Zhou, Y.F. Huang, Exchange-coupling behavior in soft/hard Li0.3Co0.5Zn0.2Fe2O4/SrFe12O19 core/shell composite synthesized by the two-step ball-milling-assisted ceramic process. J. Mater. Sci. Mater. Electron. 30(3), 1579–1590 (2019)

    Google Scholar 

  33. J.Y. Xia, X.H. Wu, Y.F. Huang, W.W. Wu, J.L. Liang, Q.Z. Li, Enhancements of saturation magnetization and coercivity in Ni0.5Zn0.5Fe2O4/SrFe12O19 composite powders by exchange-coupling mechanism. J. Mater. Sci. Mater. Electron. 30, 11682–11693 (2019)

    Google Scholar 

  34. J. Ou-Yang, Y. Zhang, X.N. Luo, B.Q. Yan, B.P. Zhu, X.F. Yang, S. Chen, Composition dependence of the magnetic properties of CoFe2O4/CoFe2 composite nano-ceramics. Ceram. Int. 41(3), 3896–3900 (2015)

    Google Scholar 

  35. S.C. Xu, Z.H. Wang, R. Su, N. Han, A.L. Xie, L. Wang, H.B. Li, Structure and magnetic properties of multi-morphological CoFe2O4/CoFe nanocomposites by one-step hydrothermal synthesis. Ceram. Int. 44(8), 9377–9383 (2018)

    Google Scholar 

  36. M. Kahnes, R. Müller, J. Töpfer, Phase formation and magnetic properties of CoFe2O4/CoFe2 nanocomposites. Mater. Chem. Phys. 227, 83–89 (2019)

    Google Scholar 

  37. X. Sun, Y.Q. Ma, Y.F. Xu, S.T. Xu, B.Q. Geng, Z.X. Dai, G.H. Zheng, Improved magnetic performance at low and high temperatures in non-exchange-coupling CoFe2O4/CoFe2 nanocomposites. J. Alloys Compd. 645, 51–56 (2015)

    Google Scholar 

  38. G.C.P. Leite, E.F. Chagas, R. Pereira, R.J. Prado, A.J. Terezo, M. Alzamora, E. Baggio-Saitovitch, Exchange coupling behavior in bimagnetic CoFe2O4/CoFe2 nanocomposite. J. Magn. Magn. Mater. 324(18), 2711–2716 (2012)

    ADS  Google Scholar 

  39. J.M. Soares, O.L.A. Conceição, F.L.A. Machado, A. Prakash, S. Radha, A.K. Nigam, Magnetic couplings in CoFe2O4/FeCo–FeO core–shell nanoparticles. J. Magn. Magn. Mater. 374, 192–196 (2015)

    ADS  Google Scholar 

  40. B. Aslibeiki, Magnetic interactions and hysteresis loops study of Co/CoFe2O4 nanoparticles. Ceram. Int. 42(5), 6413–6421 (2016)

    Google Scholar 

  41. M. Lu, M. Liu, L. Wang, S.C. Xu, J.L. Zhao, H.B. Li, Structural and magnetic properties of CoFe2O4/CoFe2/SiO2 nanocomposites with exchange coupling behavior. J. Alloys Compd. 690, 27–30 (2017)

    Google Scholar 

  42. X.H. Wu, W. Chen, W.W. Wu, J. Wu, Q. Wang, Improvement of the magnetic moment of NiZn ferrites induced by substitution of Nd3+ ions for Fe3+ ions. J. Magn. Magn. Mater. 453, 246–253 (2018)

    ADS  Google Scholar 

  43. J.H. Zhao, L. Liu, R.L. Jiang, H.Z. Zhang, Dielectric relaxation and magnetic resonance in microwave absorption performance of CoxFe3–xO4 (0 ≤ x ≤1) nanocrystals. Ceram. Int. 45(15), 18347–18355 (2019)

    Google Scholar 

  44. W. Chen, W.W. Wu, D.S. Liu, J. Wu, Improvement of the coercivity of rod-like NiCuMg ferrites induced by substitution of Dy3+ ions for Fe3+ ions. J. Mater. Sci. Mater Electron. 28, 2901–2909 (2017)

    Google Scholar 

  45. N. Boda, G. Boda, K.C.B. Naidu, M. Srinivas, K.M. Batoo, D. Ravinder, A. Panasa Reddy, Effect of rare earth elements on low temperature magnetic properties of Ni and Co-ferrite nanoparticles. J. Magn. Magn. Mater. 473, 228–235 (2019)

    ADS  Google Scholar 

  46. S.F. Mansour, O.M. Hemeda, S.I. El-Dek, B.I. Salem, Influence of La doping and synthesis method on the properties of CoFe2O4 nanocrystals. J. Magn. Magn. Mater. 420, 7–18 (2016)

    ADS  Google Scholar 

  47. R. Safi, A. Ghasemi, R. Shoja-Razavi, M. Tavoosi, Development of novel exchange spring magnet by employing nanocomposites of CoFe2O4 and CoFe2. J. Magn. Magn. Mater. 419, 92–97 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Key Program Projects of Research and Development of Guangxi (Grant No. AB19110024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuehang Wu or Wenwei Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Huang, Y., Zhang, S. et al. Structure, magnetic properties, and exchange-coupling effect of Co0.6Mg0.15NdxFe2.25–xO4/Co. Appl. Phys. A 126, 358 (2020). https://doi.org/10.1007/s00339-020-3443-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3443-6

Keywords

Navigation