Skip to main content
Log in

Cold substrate method to prepare plasmonic Ag nanoparticle: deposition, characterization, application in solar cell

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, the surface plasmon effects of the Ag nanoparticle were investigated depending on the substrate temperature and coating time. Deposition procedure for the Ag coating was the vacuum deposition at low substrate temperature (< 300 K) instead of the commonly used the vacuum deposition at high substrate temperatures. The Ag thin films were deposited on n-type Si, glass and solar cell with safety glass substrates. The structural and optical characteristics of the Ag thin films prepared on Si and glass substrates were investigated. The Ag thin films had a polycrystalline structure with cubic phase. The (111) preferred orientation for 300 K substrate temperature was changed to (200) after 200 K substrate temperature. Homogeneous nano-sized Ag particles on Si were obtained at the 150–200 K temperature range. Optical measurements were performed for the Ag thin films prepared on glass substrates. According to reflectance measurements, plasmon resonance effect of the Ag nanoparticles was observed around 435–540 nm. The Ag nanoparticles prepared on solar cell at low substrate temperature increased the solar cell efficiency for all coating time because the nanoparticle size and shape were not changed significantly with the coating time. However, the Ag thin films prepared at high substrate temperature decreased device efficiency with the increasing coating time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, J. Appl. Phys. 101, 093105 (2007)

    ADS  Google Scholar 

  2. D. Ganeshan, F. Xie, Q. Sun, Y. Li, M. Wei, Langmuir 34, 5367 (2018)

    Google Scholar 

  3. H. Wang, Y. Ding, W. Chen, Y. Liu, D. Tang, G. Cui, W. Li, J. Shi, Z. Bo, Appl. Mater. Interfaces 10, 30919 (2018)

    Google Scholar 

  4. A. Krishnan, S. Das, S.R. Krishna, M.Z.A. Khan, Opt. Express 22, A800 (2014)

    ADS  Google Scholar 

  5. A.K. Ali, S. Erten-ela, K.I. Hassoon, Ç. Ela, Thin Solid Films 671, 127 (2019)

    ADS  Google Scholar 

  6. D. Derkacs, S.H. Lim, P. Matheu, W. Mar, E.T. Yu, Appl. Phys. Lett. 89, 093103 (2006)

    ADS  Google Scholar 

  7. H.A. Atwater, A. Polman, Nat. Mater. 9, 205 (2010)

    ADS  Google Scholar 

  8. W.-J. Ho, S.-K. Feng, J.-J. Liu, Y.-C. Yang, C.-H. Ho, Appl. Surf. Sci. 439, 868 (2018)

    ADS  Google Scholar 

  9. W.R. Erwin, H.F. Zarick, E.M. Talbert, R. Bardhan, Energy Environ. Sci. 9, 1577 (2016)

    Google Scholar 

  10. F. Parveen, B. Sannakki, C.V. Jagtap, V.S. Kadam, H.M. Pathan, AIP Conf. Proc. 1989, 030015 (2018)

    Google Scholar 

  11. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)

    Google Scholar 

  12. S. Bhardwaj, A. Pal, K. Chatterjee, T.H. Rana, G. Bhattacharya, S.S. Roy, P. Chowdhury, G.D. Sharma, S. Biswas, J. Mater. Sci.: Mater. Electron. 29, 18209 (2018)

    Google Scholar 

  13. H.T.M.C.M. Baltar, K. Drozdowicz-Tomsia, E.M. Goldys, J. Phys. Chem. C 122, 22083 (2018)

    Google Scholar 

  14. Y. Li, H. Wang, Q. Feng, G. Zhou, Z.-S. Wang, Energy Environ. Sci. 6, 2156 (2013)

    Google Scholar 

  15. J. Du, J. Qi, D. Wang, Z. Tang, Energy Environ. Sci. 5, 6914 (2012)

    Google Scholar 

  16. H. Li, W. Hong, F. Cai, Q. Tang, Y. Yan, X. Hu, B. Zhao, D. Zhang, Z. Xu, J. Mater. Chem. 22, 24734 (2012)

    Google Scholar 

  17. X. Zhang, J. Liu, S. Li, X. Tan, M. Yua, J. Du, RSC Adv. 3, 18587 (2013)

    Google Scholar 

  18. M. Lisunova, M. Mahmoud, N. Holland, Z.A. Combs, M.A. El-Sayed, V.V. Tsukruk, J. Mater. Chem. 22, 16745 (2014)

    Google Scholar 

  19. T.A. Mahajan, R.K. Bedi, S. Kumar, V. Saxena, D.K. Aswal, J. Appl. Phys. 117, 083111 (2015)

    ADS  Google Scholar 

  20. W. Ho, S. Fen, J. Liu, Appl. Phys. A 124, 29 (2018)

    ADS  Google Scholar 

  21. C. Noguez, J. Phys. Chem. C 111, 3806 (2007)

    Google Scholar 

  22. V. Amendola, O.M. Bakr, F. Stellacci, Plasmonics 5, 85 (2010)

    Google Scholar 

  23. A. Ghosh, S.M.M.D. Dwivedi, H. Ghadi, P. Chinnamuthu, S. Chakrabarti, A. Mondal, Plasmonics 13, 1105 (2018)

    Google Scholar 

  24. M.M. Islam, S. Mandal, S. Bhattacharya, Plasmonics 13, 1803 (2018)

    Google Scholar 

  25. M.J. Mendes, S. Morawiec, F. Simone, F. Priolo, I. Crupi, Nanoscale 6, 4796 (2014)

    ADS  Google Scholar 

  26. B.A. Movchan, A. Demchishin, Phys. Met. Metallogr. 28, 83 (1969)

    Google Scholar 

  27. S. Mukherjee, D. Gall, Thin Solid Films 527, 158 (2013)

    ADS  Google Scholar 

  28. S.A. Kukushkin, A.V. Osipov, Surf. Sci. 329, 135 (1995)

    ADS  Google Scholar 

  29. A.P. Belyaev, V.P. Rubets, I.P. Kalinkin, Mater. Phys. Mech. 6, 58 (2003)

    Google Scholar 

  30. A.P. Belyaev, V.P. Rubets, Semiconductors 35, 279 (2001)

    ADS  Google Scholar 

  31. M. Tomakin, M. Altunbaş, E. Bacaksız, İ. Polat, Mater. Sci. Semicond. Process. 14, 120 (2011)

    Google Scholar 

  32. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003)

    Google Scholar 

  33. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, 25th edn. (Springer, Berlin, 1995)

    Google Scholar 

  34. L. Mahmudin, E. Suharyadi, A. Bambang, S. Utomo, K. Abraha, J. Mod. Phys. 6, 1071 (2015)

    Google Scholar 

  35. Y.-W. Ma, Y. Zhang, Z.-W. Wu, L.-H. Zhang, J. Zhang, G.-S. Jian, S.-F. Wu, J. Appl. Phys. 105, 103101 (2009)

    ADS  Google Scholar 

  36. V. Mankad, R.K. Kumar, P.K. Jha, Nanosci. Nanotechnol. Lett. 5, 1 (2013)

    Google Scholar 

  37. N. Fahim, Z. Ouyang, Y. Zhang, B. Jia, Z. Shi, M. Gu, Opt. Mater. Express 2, 190 (2012)

    ADS  Google Scholar 

  38. U. Guler, R. Turan, Opt. Express 18, 17322 (2010)

    ADS  Google Scholar 

  39. S. Suresh, G.E. Unni, M. Satyanarayana, A.S. Nair, V.P.M. Pillai, Electrochim. Acta 289, 1 (2018)

    Google Scholar 

  40. L. Wang, Y. Yao, X. Ma, C. Huang, Z. Liu, H. Yu, M. Wang, Q. Zhang, X. Li, S. Chen, W. Huang, Organ. Electron. 61, 96 (2018)

    ADS  Google Scholar 

  41. L. Lu, Z. Luo, T. Xu, L. Yu, Nano Lett. 13, 59 (2013)

    ADS  Google Scholar 

  42. K. N’Konou, M. Chalh, V. Monnier, N.P. Blanchard, Y. Chevolot, B. Lucas, S. Vedraine, P. Torchio, Synth. Met. 239, 22 (2018)

    Google Scholar 

  43. A. Hajjiah, I. Kandas, N. Shehata, Materials (Basel) 11, 1626 (2018)

    ADS  Google Scholar 

  44. B. Ghosh, S.C. Ray, R. Espinoza-gonzález, R. Villarroel, S.A. Hevia, P. Alvarez-vega, Chem. Phys. Lett. J. 698, 60 (2018)

    ADS  Google Scholar 

  45. A.T. Nair, S.P. Palappra, V.S. Reddy, Appl. Mater. Interfaces 10, 32483 (2018)

    Google Scholar 

  46. M. Schmid, J. Klaer, R. Klenk, M. Topič, J. Krč, Thin Solid Films 527, 308 (2013)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Tomakin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevruzoğlu, V., Bal Altuntaş, D. & Tomakin, M. Cold substrate method to prepare plasmonic Ag nanoparticle: deposition, characterization, application in solar cell. Appl. Phys. A 126, 255 (2020). https://doi.org/10.1007/s00339-020-3433-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3433-8

Keywords

Navigation