Skip to main content
Log in

Polystyrene-attached graphene oxide with different graft densities via reversible addition-fragmentation chain transfer polymerization and grafting through approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) modified with double bond was utilized in grafting polystyrene chains to its surface through reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene. For this purpose, 3-(((2-aminoethyl)amino)dimethylsilyl)propyl methacrylate (OD) including double bond and amine groups was prepared and used for modification of GO in different grafting densities by a ring-opening nucleophilic reaction. Then, polystyrene-grafted GO was obtained by “grafting through” RAFT polymerization of styrene. Successful using of RAFT polymerization, efficiency of the grafting reaction, different characteristics of the graphene-attached and free polystyrene chains were investigated. Proton nuclear magnetic resonance spectroscopy confirmed successful synthesis of OD. Its grafting on GO was also confirmed by using X-ray photoelectron spectroscopy. The neat and modified GO layers were also investigated by Fourier transform infrared and Raman spectroscopies. Size exclusion chromatography was used to study molecular weight and polydispersity index of the attached polystyrene chains. Thermogravimetric analysis provides degradation temperature, char content, and grafting ratio of the modifier and polystyrene chains. Grafting ratio of OD was 10.3 and 4.4% for the modified GO layers with high and low grafting densities, respectively. Layers morphology was visually studied by scanning and transmission electron microscopies. Flat and smooth graphite platelets were changed to wrinkled layers after oxidation, and converted to opaque layers after grafting with polystyrene chains. High length of small molecule modifier in this study resulted in highly efficient grafting reaction.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, Prog. Polym. Sci. 36, 638 (2011)

    Google Scholar 

  2. X. Gong, G. Liu, Y. Li, D.Y.W. Yu, W.Y. Teoh, Chem. Mater. 28, 8082 (2016)

    Google Scholar 

  3. X. Ji, Y. Xu, W. Zhang, L. Cui, J. Liu, Compos. Part A Appl. Sci. Manuf. 87, 29 (2016)

    Google Scholar 

  4. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    ADS  Google Scholar 

  5. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme, L.C. Brinson, Nat. Nanotechnol. 3, 327 (2008)

    ADS  Google Scholar 

  6. H. Roghani-Mamaqani, V. Haddadi-Asl, K. Khezri, M. Salami-Kalajahi, RSC Adv. 4, 24439 (2014)

    Google Scholar 

  7. H. Roghani-mamaqani, RSC Adv. 5, 53357 (2015)

    Google Scholar 

  8. H. Roghani-Mamaqani, V. Haddadi-Asl, Polym. Compos. 35, 386 (2014)

    Google Scholar 

  9. R.K. Layek, A.K. Nandi, Polymer (Guildf). 54, 5087 (2013)

    Google Scholar 

  10. M. Zhang, Y. Li, Z. Su, G. Wei, R. Soc. Chem. 6, 6107 (2015)

    Google Scholar 

  11. A. Shaygan Nia, W.H. Binder, Prog. Polym. Sci. 67, 48 (2017)

    Google Scholar 

  12. M. Fang, K. Wang, H. Lu, Y. Yang, S. Nutt, J. Mater. Chem. 19, 7098 (2009)

    Google Scholar 

  13. H. Roghani-Mamaqani, V. Haddadi-Asl, M. Salami-Kalajahi, Polym. Rev. 52, 142 (2012)

    Google Scholar 

  14. H. Roghani-Mamaqani, V. Haddadi-Asl, K. Khezri, M. Slami-Kalajahi, Polym. Eng. Sci. 55, 1720 (2015)

    Google Scholar 

  15. H. Roghani-mamaqani, V. Haddadi-Asl, K. Khezri, M. Salami-kalajahi, M. Najafi, S.-A. Mirshafiei-Langari, Iran. Polym. J. 24, 51 (2014)

    Google Scholar 

  16. H. Roghani-Mamaqani, Polym. Compos. 38, 2450 (2017)

    Google Scholar 

  17. H. Roghani-Mamaqani, V. Haddadi-asl, K. Khezri, M. Salami-Kalajahi, Polym. Int. 63, 1912 (2014)

    Google Scholar 

  18. H. Roghani-Mamaqani, V. Haddadi-Asl, K. Khezri, E. Zeinali, M. Salami-Kalajahi, J. Polym. Res. 21, 333 (2014)

    Google Scholar 

  19. Y. Deng, Y. Li, J. Dai, M. Lang, X. Huang, J. Polym. Sci. Part A Polym. Chem. 49, 1582 (2011)

    ADS  Google Scholar 

  20. S. Sun, Y. Cao, J. Feng, P. Wu, J. Mater. Chem. 20, 5605 (2010)

    Google Scholar 

  21. J.-S. Wang, Y.-J. Huang, B.-J. Hwang, F.-C. Chang, Y.-S. Ye, Y.-N. Chen, J. Rick, Chem. Mater. 24, 2987 (2012)

    Google Scholar 

  22. S.H. Lee, D.R. Dreyer, J. An, A. Velamakanni, R.D. Piner, S. Park, Y. Zhu, S.O. Kim, C.W. Bielawski, R.S. Ruoff, Macromol. Rapid Commun. 31, 281 (2010)

    Google Scholar 

  23. W.A. Braunecker, K. Matyjaszewski, Prog. Polym. Sci. 32, 93 (2007)

    Google Scholar 

  24. A. Goto, Y. Tsujii, T. Fukuda, Polymer (Guildf). 49, 5177 (2008)

    Google Scholar 

  25. C.Y. Hong, Y.Z. You, C.Y. Pan, Chem. Mater. 17, 2247 (2005)

    Google Scholar 

  26. H. Roghani-mamaqani, K. Khezri, Appl. Surf. Sci. 360, 373 (2016)

    ADS  Google Scholar 

  27. H. Roghani-Mamaqani, K. Khezri, J. Polym. Res. 23, 190 (2016)

    Google Scholar 

  28. K. Khezri, M. Najafi, H. Roghani-mamaqani, J. Polym. Res. 24, 34 (2017)

    Google Scholar 

  29. H.M. Etimimi, M.P. Tonge, R.D. Sanderson, Polym. Chem. 49, 1621 (2011)

    Google Scholar 

  30. P. Ding, J. Zhang, N. Song, S. Tang, Y. Liu, L. Shi, Compos. Part A Appl. Sci. Manuf. 69, 186 (2015)

    Google Scholar 

  31. F. Samadaei, M. Salami-Kalajahi, H. Roghani-Mamaqani, Int. J. Polym. Mater. Polym. Biomater. 65, 302 (2016)

    Google Scholar 

  32. F. Beckert, C. Friedrich, R. Thomann, R. Mülhaupt, Macromolecules 45, 7083 (2012)

    ADS  Google Scholar 

  33. K. Jiang, C. Ye, P. Zhang, X. Wang, Y. Zhao, Macromolecules 45, 1346 (2012)

    ADS  Google Scholar 

  34. Y. Liu, X. Meng, Z. Liu, M. Meng, F. Jiang, M. Luo, L. Ni, J. Qiu, F. Liu, G. Zhong, Langmuir 31, 8841 (2015)

    Google Scholar 

  35. P. Eskandari, Z. Abousalman-rezvani, H. Roghani-mamaqani, M. Salami-kalajahi, H. Mardani, Adv. Colloid Interface Sci. 273, 102021 (2019)

    Google Scholar 

  36. E. Zeinali, V. Haddadi-asl, H. Roghani-mamaqani, RSC Adv. 4, 31428 (2014)

    Google Scholar 

  37. J.T. Lai, D. Filla, R. Shea, Macromolecules 35, 6754 (2002)

    ADS  Google Scholar 

  38. E. Zeinali, V. Haddadi-Asl, H. Roghani-Mamaqani, J. Biomed. Mater. Res. Part A 106, 231 (2018)

    Google Scholar 

  39. W. Lu, A. Slesarev, Z. Sun, A. Sinitskii, D.C. Marcano, L.B. Alemany, D.V. Kosynkin, J.M. Berlin, J.M. Tour, ACS Nano 4, 4806 (2010)

    Google Scholar 

  40. H. Roghani-mamaqani, V. Haddadi-asl, Colloid Polym. Sci. 293, 735 (2014)

    Google Scholar 

  41. H. Roghani-mamaqani, V. Haddadi-asl, Colloid Polym. Sci. 292, 2971 (2014)

    Google Scholar 

  42. M. Gholipour-mahmoudalilou, H. Roghani-mamaqani, R. Azimi, A. Abdollahi, Appl. Surf. Sci. 428, 1061 (2017)

    ADS  Google Scholar 

  43. R. Azimi, H. Roghani-mamaqani, M. Gholipour-mahmoudalilou, Polymer (Guildf). 126, 152 (2017)

    Google Scholar 

  44. S. Liao, P. Liu, M. Hsiao, C. Teng, C. Wang, M. Ger, C. Chiang, Ind. Eng. Chem. Res. 51, 4573 (2012)

    Google Scholar 

  45. Y. Chen, C. Wang, J. Chen, X. Liu, Z. Tong, J. Polym. Sci. Part A Polym. Chem. 47, 1354 (2009)

    ADS  Google Scholar 

  46. H. Hu, X. Wang, J. Wang, L. Wan, F. Liu, H. Zheng, R. Chen, C. Xu, Chem. Phys. Lett. 484, 247 (2010)

    ADS  Google Scholar 

  47. I. Jeon, H. Choi, S. Jung, J. Seo, M. Kim, L. Dai, J. Baek, J. Am. Chem. Soc. 135, 1386 (2013)

    Google Scholar 

  48. J. Zhang, H. Yang, G. Shen, P. Cheng, Chem. Commun. 46, 1112 (2010)

    Google Scholar 

  49. R. Sanna, D. Sanna, V. Alzari, D. Nuvoli, S. Scognamillo, M. Piccinini, M. Lazzari, E. Gioffredi, G. Malucelli, A. Mariani, J. Polym. Sci. Part A Polym. Chem. 50, 4110 (2012)

    ADS  Google Scholar 

  50. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    ADS  Google Scholar 

  51. A. Mousavi, H. Roghani-mamaqani, M. Salami-kalajahi, S. Shahi, A. Abdollahi, Mater. Chem. Phys. 216, 468 (2018)

    Google Scholar 

  52. A. Mousavi, S. Shahi, A. Abdollahi, Express Polym. Lett. 12, 187 (2018)

    Google Scholar 

  53. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, Carbon N. Y. 45, 1558 (2007)

    Google Scholar 

Download references

Acknowledgements

Iran National Science Foundation (INSF) is greatly appreciated for its financial support (Grant No. 96013220).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Roghani-Mamaqani or Mehdi Salami-Kalajahi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardani, H., Roghani-Mamaqani, H., Khezri, K. et al. Polystyrene-attached graphene oxide with different graft densities via reversible addition-fragmentation chain transfer polymerization and grafting through approach. Appl. Phys. A 126, 251 (2020). https://doi.org/10.1007/s00339-020-3428-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3428-5

Keywords

Navigation