Skip to main content
Log in

Homogenization of artificial media with a transmission line approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The scientific research on metamaterials has achieved significant progress in recent years. In contrast, the related practical applications have encountered tough challenges. The insufficient homogeneity makes these artificial media lose its competitiveness to conventional continuous media. In this work, we propose a generalized approach to realize microwave metamaterials with ultra-subwavelength unit cells constructed with rolled-up transmission lines. As an illustration, we design and fabricate a bulk left-handed material sample with standard printed circuit board technique. With the normalized periodicity of the unit cells ranging from 1/61 to 1/48 of wavelength, the negative refractive index can be clearly measured in the frequency range between 1.02 and 1.3 GHz. Simulation shows that by employing the planar process for semiconductor integrated circuits, this homogeneity can be further improved to a level of 1/300 of the wavelength at gigahertz frequencies. Our work also provides a new method for obtaining ultra-small microwave resonators, which can be widely used for all kinds of planar technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.B. Pendry, A.J. Holden et al., Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996)

    Article  ADS  Google Scholar 

  2. J.B. Pendry, A.J. Holden et al., Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Technol. 47, 2075–2084 (1999)

    Article  ADS  Google Scholar 

  3. R. Marqués, F. Mesa et al., comparative analysis of edge and broadside coupled split ring resonators for metamaterial design theory and experiments. IEEE Trans. Antennas Propag. 51, 2572–2581 (2003)

    Article  ADS  Google Scholar 

  4. D. Schurig, J.J. Mock et al., Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 88, 041109 (2006)

    Article  ADS  Google Scholar 

  5. G.V. Eleftheriades, O. Siddiqui et al., Transmission line models for negative refractive index media and associated implementations without excess resonators. IEEE Microw. Wirel. Compon. Lett. 13, 51–53 (2003)

    Article  Google Scholar 

  6. R.A. Shelby, D.R. Smith et al., Experimental verification of a negative index of refraction. Science 282, 77–79 (2001)

    Article  ADS  Google Scholar 

  7. S. Xi, H. Chen et al., Experimental verification of reversed Cherenkov radiation in left-handed metamaterial. Phys. Rev. Lett. 103, 194801–194804 (2009)

    Article  ADS  Google Scholar 

  8. N. Seddon, T. Bearpark, Observation of the Inverse Doppler effect. Science 302, 1538–1540 (2003)

    Article  ADS  Google Scholar 

  9. J. Carbonell, L.J. Roglá et al., Design and experimental verification of backward-wave propagation in periodic waveguide structures. IEEE Trans. Microw. Theory Technol. 54, 1527–1533 (2006)

    Article  ADS  Google Scholar 

  10. A. Grbic, G.V. Eleftheriades, Experimental verification of backward-wave radiation from a negative refractive index metamaterial. J. Appl. Phys. 92, 5930–5935 (2002)

    Article  ADS  Google Scholar 

  11. D. Schurig, J.J. Mock et al., Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)

    Article  ADS  Google Scholar 

  12. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  ADS  Google Scholar 

  13. A. Erentok, R.W. Ziolkowski et al., Lumped element-based, highly sub-wavelength, negative index metamaterials at UHF frequencies. J. Appl. Phys. 104, 034901–034911 (2008)

    Article  ADS  Google Scholar 

  14. P.W. Kolb, T.S. Salter et al., Extreme subwavelength electric GHz metamaterials. J. Appl. Phys. 110, 0549061–0549065 (2011)

    Article  Google Scholar 

  15. X. Chen, Y.Q. Li et al., Design and analysis of lumped resistor loaded metamaterial absorber with transmission band. Opt. Express 20, 28347–28352 (2012)

    Article  ADS  Google Scholar 

  16. X. Zhang, E. Usi et al., Extremely sub-wavelength negative index metamaterial. Prog. Electromagn. Res. 152, 95–104 (2015)

    Article  Google Scholar 

  17. D.R. Smith, W.J. Padilla et al., Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)

    Article  ADS  Google Scholar 

  18. D.R. Smith, J.B. Pendry et al., Metamaterials and negative refractive index. Science 305, 788–792 (2004)

    Article  ADS  Google Scholar 

  19. D. Ye, K. Chang et al., Microwave gain medium with negative refractive index. Nat. Commun. 5, 1–7 (2014)

    ADS  Google Scholar 

  20. J.D. Baena, R. Marqués et al., Artificial magnetic metamaterial design by using spiral resonators. Phys. Rev. B. 69, 0144021–0144025 (2004)

    Article  Google Scholar 

  21. R. Marqués, F. Medina et al., Role of bianisotropy in negative permeability and left-handed metamaterials. Phys. Rev. B. 65, 1444401–1444406 (2002)

    Google Scholar 

  22. D.R. Smith, S. Schultz et al., Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B. 65, 1951041–1951045 (2002)

    Article  Google Scholar 

  23. X. Chen, T.M. Grzegorczyk et al., Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 70, 0166081–0166087 (2004)

    Google Scholar 

  24. K. Aydin, K. Guven et al., Observation of negative refraction and negative phase velocity in left-handed metamaterials. Appl. Phys. Lett. 86, 1241021–1241023 (2005)

    Article  Google Scholar 

  25. T. Koschny, P. Markoš et al., Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials. Phys. Rev. B. 71, 2451051–24510522 (2005)

    Google Scholar 

  26. T. Koschny, P. Markos et al., Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. Phys. Rev. E 68, 0656021–0656024 (2003)

    Article  Google Scholar 

  27. H. Chen, J. Zhang et al., Experimental retrieval of the effective parameters of metamaterials based on a waveguide method. Opt. Express 14, 12944–12949 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC under Grants 61771422, 61675013, the ZJNSF under Grants LR18F010001 and LY16F010009, the Program for the Top Young Innovative Talents under Grant Q1313-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexin Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Chen, L., Zhu, Z. et al. Homogenization of artificial media with a transmission line approach. Appl. Phys. A 126, 238 (2020). https://doi.org/10.1007/s00339-020-3420-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3420-0

Keywords

Navigation