Skip to main content
Log in

Enhanced refractive index sensitivity and SERS performances of individual body-Ag-nanoshell-encapsulated Au nanorods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Individual Au nanorods have been widely investigated in refractive index sensing and surface enhanced Roman spectroscopy (SERS) due to their excitation of localized surface plasmon resonances (LSPRs). It is crucial to unveil the effect of Ag nanoshell encapsulating only the body part of individual Au nanorods to improve their SERS and plasmonic sensing applications, which were investigated numerically by finite element method (FEM) in this paper. We have calculated the extinction spectra of individual body-Ag-nanoshell-encapsulated Au nanorods and optimized their refractive index sensitivity factor S, figure of merit FOM, and enhanced electric fields \(\left| E \right|\) by controlling Au nanorod aspect ratio AR and Ag nanoshell thickness \(t\). An effective aspect ratio ARʹ combining both AR and \(t\) is revealed to control their S, FOM and \(\left| E \right|\). The optimized FOM and ARʹ for their plasmon sensitivity applications are predicted, both of which are shown to become larger than that of naked Au nanorod. The optimized \(\left| E \right|\) under three normally adopted excitation laser in experiments are also predicted, which are all ~ 17 times that of naked Au nanorods. This work is helpful to choose the appropriate size of partially encapsulated Au nanorods by Ag to facilitate designing of their LSPR based plasmon sensing and SERS nanodevices from visible to infrared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.L. Zhu, M. Cortie, I. Blakey, Nanomater. Nanotechnol. 5, 22 (2015)

    Article  Google Scholar 

  2. W. Chamorro, J. Ghanbaja, Y. Battie, A.E. Naciri, F. Soldera, F. Mucklich, D. Horwat, J. Phys. Chem. C. 120(51), 29405–29413 (2016)

    Article  Google Scholar 

  3. R.R. Gan, H.H. Fan, Z.C. Wei, H.Y. Liu, S. Lan, Q.F. Dai, Nanomaterials. 9(5), 711 (2019)

    Article  Google Scholar 

  4. N. Gordillo, S. Catalan-Gomez, L. Pau, A. Redondo-Cubero, Nanotechnology. 30(47), 475705 (2019)

    Article  ADS  Google Scholar 

  5. K. Yao, H.J. Zhong, Z.L. Liu, M. Xiong, S.F. Leng, J. Zhang, Y.X. Xu, W.Y. Wang, L. Zhou, H.T. Huang, A.K.Y. Jen, ACS Nano 13(5), 5397–5409 (2019)

    Article  Google Scholar 

  6. K. Jiang, D.A. Smith, A. Pinchuk, J. Phys. Chem. C. 177(51), 27073–27080 (2013)

    Article  Google Scholar 

  7. F. Madzharova, Z. Heiner, J. Simke, S. Selve, J. Kneipp, J. Phys. Chem. C. 122(5), 2931–2940 (2018)

    Article  Google Scholar 

  8. L.M. Tong, H. Wei, S.P. Zhan, H.X. Xu, Sensors. 14(5), 7959–7973 (2014)

    Article  Google Scholar 

  9. J. Cao, T. Sun, T.K.V. Grattan, Sens. Actuators B. 195, 332–351 (2014)

    Article  Google Scholar 

  10. W. C. Yang, Y. X. Chen, T. Y. Fu, S. Peng, C. L. Du. Y. G. Lu, D. N. Shi, Appl. Phys. A Mater. 125(5), 345 (2019).

  11. J. Becker, A. Trügler, A. Jakab, U. Hohenester, C. Sönnichsen, Plasmonics 5, 161–167 (2010)

    Article  Google Scholar 

  12. C.L. Du, W.C. Yang, S. Peng, D.N. Shi, Phys. Chem. Chem. Phys. 21(14), 7654–7660 (2019)

    Article  Google Scholar 

  13. T. Chen, C.L. Du, L.H. Tan, Z.X. Shen, H.Y. Chen, Nanoscale 3(4), 1575–1581 (2011)

    Article  ADS  Google Scholar 

  14. M.M. Miller, A.A. Lazarides, J. Phys. Chem B. 109(46), 21556–21565 (2005)

    Article  Google Scholar 

  15. M.Z. Liu, P. Guyot-Sionnest, J. Phys. Chem. B. 108(19), 5882–5888 (2004)

    Article  Google Scholar 

  16. J. Chen, P.T. Dong, C.G. Wang, C.Y. Zhang, J.F. Wang, X.Z. Wu, NANO 12(11), 1750131 (2017)

    Article  Google Scholar 

  17. S.L. Ke, C.X. Ka, X.Z. Chu, M.M. Jang, C.H. Wang, X.G. Zhu, Z.S. Li, D. N. Shi 177, 107837 (2019)

    Google Scholar 

  18. N.J. Greybush, K. Charipar, J.A. Geldmeier, S. Bauman, P. Johns, J. Naciri, N. Charipar, K. Park, R.A. Vaia, J. Fontana, ACS Nano 13(4), 3875–3883 (2019)

    Article  Google Scholar 

  19. J. Zhu, F. Zhang, J.J. Li, J.W. Zhao, Sens. Actuators B. 183, 556–564 (2013)

    Article  Google Scholar 

  20. B.N. Khlebtsov, D.N. Bratashov, N.G. Khlebtsov, J. Phys. Chem. C. 122, 17983–17993 (2018)

    Article  Google Scholar 

  21. Y. Wang, Y.Q. Wang, W.H. Wang, K.X. Sun, L.X. Chen, A.C.S. Appl, Mater. Interfaces. 8(41), 28105–28115 (2016)

    Article  Google Scholar 

  22. Y.J. Xiang, X.C. Wu, D.F. Liu, Z.Y. Li, W.G. Chu, L.L. Feng, K. Zhang, W.Y. Zhou, S.S. Xie, Langmuir 24(7), 3465–3470 (2008)

    Article  Google Scholar 

  23. Y. Okuno, K. Nishioka, A. Kiya, N. Nakashima, A. Ishibashi, Y. Niidome, Nanoscale. 2(8), 1489–1493 (2010)

    Article  ADS  Google Scholar 

  24. P. B. Johnson, R.W. Christy, Physical Review B. 6 (12), 4370-4739 (1972).E. D. Palik, (1998) Handbook of Optical Constants of Solids. (New York, Academic)

  25. M.A. Otte, B. Sepulveda, W.H. Ni, J.P. Juste, L.M. Liz-Marzan, L.M. Lechuga, ACS Nano 4, 349–357 (2010)

    Article  Google Scholar 

  26. A.U. Khan, S. Zhao, G. Liu, J Phys Chem C 120, 34 (2016)

    Google Scholar 

  27. J. Kaur, M. Singh, C. Dellaversana, R. Benedetti, P. Giardina, M. Rossi, M. Valadan, A. Vergara, A. Cutarelli, A.M.I. Montone, L. Altucci, F. Corrado, A. Nebbioso, C. Altucci, Sci. Rep. 8, 16386 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChaoLing Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22820 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Fu, T., Yang, W. et al. Enhanced refractive index sensitivity and SERS performances of individual body-Ag-nanoshell-encapsulated Au nanorods. Appl. Phys. A 126, 214 (2020). https://doi.org/10.1007/s00339-020-3387-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3387-x

Keywords

Navigation